
-At84 723 SOFTWdARE TOOL SELECTION FOR A US NAVY SOFTWARE 112
MAINTENANCE ORGANIZATIONIJ) NAVAL POSTGRADUATE SCHOOL

NONTEREY CA J SEXTON JUN 87
UNCLASSIFIED F/G 12/5 NL

EEllllllllllIEhh|hEEEE|hhhE
EEE|hEEEE|hhhE
mhh||h|h|hE|hhE
EhhhEEE|hEEEEE
/llllllflflflflflfl..
Eh|hEEE|hEEEEE

FN

iiiii,.0z1. ,= 2.
L6~

111112-5 1 gn1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

I * ~'9 W ; :q ' ' r' -. - WI_. Wlm"xJ'

NAVAL POSTGRADUATE SCHOOL
N Monterey, California 011C FILE COPY

00

THESIS r21987
SOFTWARE TOOL SELECTION FOR A

U. S. NAVY SOFTWARE MAINTENANCE ORGANIZATION

by

Joanne Sexton

June 1987

Thesis Advisor: }ordon H. 3radley

Approved for public release; distribution is unlimited

8187 ". 1 47

UNCLASSIFIED7 "*J z2-
SECURITY CLASSIFICATION OF T64IS PAGE A,! , I

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

Unclassified ____________________

Za SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILAILITY OF REPORT
DECASSFIATIN IDONGRDIN SHEDLEApproved for public release;

2b 0ICASFCTO/ONRDN CEUEDis tribut ion is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

Ga NAME OF PERFORMING ORGANIZATION 6Gb OFFICE SYMBOL ?a NAME OF MONITORING ORGANIZATION
I (if 400scab'e)Naval Postgraduate School Code 52 Naval Postgraduate School

6C ADDRESS (City, Stare, and ZIP Code) 7b ADDRESS (City. State. and ZIP Code)

Monterey, California 939)43-5000 Monterey, California 93943-5000

S& NAME OF FUNDING iSPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION apoale

SC ADDRESS (Cty. Staote. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASI WORK jNIT
ELEMENT NO INO NO ~ ACCESSION NO

1 TITLE (include Security Classification)
SOFTWARE TOOL SELECTION FOR A U.S. NAVY SOFTWARE MAINTENANCE
ORGANIZATION Cu)
1, PERSOAi AUTHOR(S)
Sexton, Joanne

7s -7- OF REPORT I 1b TIME COVERED 14 DATE OF REPORT (Year. Month. Day) IS PAGE CO%,NT
Master's Thesis FROM TO 1987 June 127
6 SLPPLEMVENTARY NOTATION

COSAtI CODES 18 SUBJECT TERMS (Continue on reverse of necessary and identify by block number)
SELD GROUP -SUB.GROUP Program understanding; Software maintenance;

Software tools; Software environments

9 ABSTRACT (Continue on reverse if necessary and identify by block number)
Software tools have been in existence for a number of years. The term

software environments, or how well software tools work together, has been
a current topic in the literature. Unfortunately, those discussions have
been limited to software production environments only. A greater need
exists to define what is reauired in a software: maintenance environment.
3Doltware maintenance environment reouir-ernents should drive the needs tof
cDroducti.)n -environments because :Df the 7,reater permanence D' nai-ntenance
and its more sizable effect on overall software lifecycle costs. As a
step in that direction, this thesis examines one particular aspect of soft-
ware maintenance - how to understand programs. With this particular focus
this thesis defines criteria to rate software maintenance tool selection,
and offers alternative solutions for organizational aspects that are not
currently automated by software tools.
;0 0 SR3U TiON oAVAILAILITY OF ABSTRACT It ABSTRACT SECURITY CLASSIFICATION

WN:CLASSIPIEO4JNL1MITEO [3 SAME AS RPT C3OTIC USERS Unclassified
220 %AME OF RESPONSIBLE INDIVIDUAL JIN ELEPHN InCI Ar.Cde 2 OFC SM
Prof. Gordon H. Bradley 0t5 b46-259 Code 52Bz

00 FORM 1473. 34MAII 93 APR vdt-ri omavbe usedwntiletsausted SECQRITY 17LASSIFICArION OF !46 PAGE _
All other editions ate obsolete UNCLA SS IFIED

LS1

Approved for public release; distribution is unlimited

Software Tool Selection for a
U. S. Navy Software Maintenance Organization

by

Joanne Sexton
Lieutenant, United States Navy
B.S., Rutgers University, 1978

Submitted in partial fulfillment of
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author.
Jo e in

Approved by:
Gordon H. Bradl l sor

H:5ruc MacLennan, S nd Reader

_.. Vincent). Lum, Chairman,
'-- Departmenft of Computer Science

~~Kneale T. MarshalD-caf -- "

Information and Policy Sciences

2

N ii -- -. rr

ABSTRACT

Software tools have been in existence for a number of years.

y-Software environments, or how well software tools work together.

has been a current topic In the literature. Unfortunately, those dis-

cussions have been limited to software production environments only.

A greater need exists to define what is required in a software mainte-

nance environment. Software maintenance environment require-

ments should drive the needs of production environments because of

the greater permanence of maintenance and its more sizable effect on

overall software life-cycle costs. As a step in that direction, this thesis

examines one particular aspect of software maintenance-how to

understand programs. With this particular focus, this thesis defines

criteria to rate software maintenance tool selection, and offers

alternative solutions for organizational aspects that are not currently

automated by software tools.

7.1

*TIC .

(O-j
;Di"it

3 *I!

THESIS DISCLAIMER

The following trademarks are used throughout this thesis:

Trademark Trademark Owner

ALL-IN-1 Digital Equipment Corporation

DATATRIEVE Digital Equipment Corporation

DEC Digital Equipment Corporation

DECalc Digital Equipment Corporation

DEC/CMS Digital Equipment Corporation

DEC/MMS Digital Equipment Corporation

DECnet Digital Equipment Corporation

DEC/Test Manager Digital Equipment Corporation

DECwriter Digital Equipment Corporation

DIBOL Digital Equipment Corporation

MicroVAX Digital Equipment Corporation

Micro-VMS Digital Equipment Corporation

VAX Digital Equipment Corporation

VAXELN Digital Equipment Corporation

VAXcluster Digital Equipment Corporation

VAXnotes Digital Equipment Corporation

VAXset Digital Equipment Corporation

VAXstatlon Digital Equipment Corporation

VMS Digital Equipment Corporation

VT Digital Equipment Corporation

4

TABLE OF CONTENTS

I. BACKGROUND .. 9

A INTRODUCTION TO SOFTWARE TOOLS AND
ENVIRONMENTS 9

B. OBJECIIVES OF RESEARCH ... 9

C. LIMITATIONS AND ASSUMPIONS .. 11

11. OVERVIEW OF THE SOFTWARE SUPPORT ACTIVITY 12

A INTRODUCTION ... 12

B. FUNCTIONS OF THE SOFTWARE SUPPORT ACTIVITY 12

C. HEADQUA RERELEMENTS ... 20

D. HARDWARE AND SOFTWARE ... 21

E. COMM4UNICATIONS ... 23

F. PERSONNEL .. 24

G. TRAINING 25

H. POTENTIAL PROBLEM AREAS .. 26

I. CORE ISSUES OF SOFTWARE TOOLS .. 30

A INTRODUCTION .. 30

B. ENV.I...ENT 30

1. ihe Problems of Software Tools ... 30

2. General Requirements for a Software Environment 32

5

3. Rating the Software Support Activity Tool Set as an

-'1vmrnx Jt ... 33

C DEFINE VVHT' I1IE UJSER~ NEEDS 38

IV. PERFORMING SOFTWARE MAENTENANCE.......................... 40

A IN.TR1ODUTCION ... 40

R DEFINITION OF SOFTWARE MAINTENANCE 40

C. EIGHT STEPS OF PERFORMING PROGRAM
PiAITEN.AiNCE ... 41

1. Understanding the Problemn....................................... 42

2. Understanding the Documentation............................ 43

3. Understanding the Source Code 45

4. M#odifyig the Code ... 47

5. D~ebug .. 48

6. Test... 49

7. Perform Regression Testing..................................... 49

8. Updcate Documnrtationr... 50

V. COMPUTER PROGRAM COMPREHENSION 51

Ai INMI1ODtJCrION... 51

a FJELDSTAND AND HAMLEN S IUDY................................. 51

0- COMPUTR PROGRAM COMPREHENSION MODELS 53

1. Syntactic/Semnantic Model... 54

2. Hypothesis Model.. 56

3. Slice Method .. 59

6

D. PROS .ANDJ CON~S .. 60

1. SynrtacJtlc/SemLanrtic Mbodel 60

2. Hyp~othesis M~odel 62

3. Slice M odlel ... 63

4. Summ~naxr ... 63

VI. WHATr BROOKS TBOR1 PREDICrS 64

A. INTR7IODUJCTIION .. 64

a PRD OTEDTAPO EMS..............OB.....E...... 64

C. M~1ARTIN AND) MtcCLUJRE 68

D. MvACLENNAN .. 68

1. SiuaatedI W~orld 68

2. Persistenice ... 69

3. U~nifority .. 69

4. Floudil~ilty .. 70

5. Alternate Representations.. 70

6. Mliple Views..'70

'7. Iflstmy.. 7

E. CURTIS, KRASNER. SHEN, ISCOE.................................. 71

F. OTHER PROBLEMS ... 75

G. IMPLICATIONS FOR THE SO~rWARE SUPPORTI
ACTIVITY ... 75

VII. IMPLICATIONS FOR MANAGEMENT AND TRAINING..77]

7

A INTRODUCTION 77

B RATING THE SOFTWARE SUPPORT ACTIVITY TOOL SET 77

C. HOW SHOULD THE ORGANIZATION RESPOND TO THE
LACK OF TOOLS? ... 80

1. How to Develop Different Levels of Understanding?
How to Develop Understanding in a Top-down
Fasm? 80

2. Understanding the Problem/Specification/
i r ita... 83

3. Help in Mapping From One Domain to the Next 84

4. Dealing with Programmer Variability 86

5. How to Develop and Enforce the Organization's
One Common View/Model of the System
Being? 86

6. How to Cope With the Different Degrees of
Understanding Between Users, Management, and
the Maintenance Organization? ... 90

VIII. CONCLUSIONS 95

APPENDIX A: LIST OF ACRONYMS 97

APPENDIX B: SOFTWARE MAINTENANCE QUESTIONNAIRE 99

APPENDIX C: SOFTWARE SUPPORT ACTIVITY TOOLS SET 112

APPENDIX D: SOURCE CODE ANALIZER .. 119

REFERENCES .. 122

INnIALDISIRMUTMON LUSr .. 126

8

1. BACKGR&OUND

A. INTRODUCTION TO SOFTWARE TOOLS AND ENVIRONMENTS

Software tools have been in use for a long time. Anyone who has

used a computer to produce written documents or to code a small

program has used a software tool. Word processors and programming

language compilers and interpreters are examples of software tools.

Literally hundreds of software tools exist to help the software

manager, designer, and maintainer to do their Job better [Ref. 1:p. 21].

So many software tools exist in fact that a number of articles and pam-

phlets have been written Just to help classify them [Refs. 2, 3. 4, and

51.

With this wide proliferation of software tools, no one can possibly

know how to use all of them or even know all the tools that may exist.

As a way to deal with this complexity, the concept of a programming

environment or a software engineering environment has evolved. An

environment is a means to collect and integrate a set of software tools

into a useful whole. Charette [Ref. l:p. 381 extends this definition of a

software engineering environment to Include all "the processes,

methods, and automation required to produce a software system."

B. OBJECTIVES OF RESEARCH

All software organizations are interested in improving program-

mer productivity. The Naval Security Group Detachment Pensacola, FL

Software Support Activity is no exception. (In the rest of this thesis,

9

this activity will be referred to as the Software Support Activity.) The

Software Support Activity is a new Navy activity that has been estab-

lished in Pensacola, FL to perform software maintenance. One of the

prime concerns of this new organization is how to improve program-

mer productivity through the use of software tools.

The issues of productivity and software tools in general are too

~ '~ broad to handle adequately in any thesis. As a consequence, the scope

of this thesis has been narrowed to look at one aspect of software

maintenance- understanding software programs. The decision to look

at this particular aspect is based on a study done by FJeldstand and

Hamlen [Ref. 61 that analyzed how maintenance programmers spend

their time. The FJeldstand and Hamlen study [Ref. 6] is covered in

greater detail in chapter five of this thesis; one of its findings is that

maintenance programmers spend over 60% of their time reading and

analyzing programs. The premise of this thesis is that any means that

can be found to improve programmer effectiveness in understanding

progi ams would have a significant productivity savings for the organi-

zation as a whole. The focus of this thesis is program understanding

and how software tools and environments may help this process.

In order to look at these aspects, a full understanding of the

Software Support Activity, a review of the issues of software tools, an

examination of software maintenance in general. an evaluation of the

Software Support Activity's existing tool set, and an in-depth analysis

of program comprehension must be achieved. Each of these subjects

are covered in subsequent chapters. Recommendations and solutions

10

to help improve program comprehension through the use of software

tools and environments are also presented in the final two chapters.

C. LIMITATIONS AND ASSUMPTIONS

Limited guidance exists as to what an organization should buy for a

software environment. No guidance exists when the organization

being considered is a software maintenance activity.

To better understand the critical issues involved in developing

requirements for a software maintenance environment a specific

organization (the Software Support Activity) was chosen for study. It is

the hope that findings established for one organization will prove uni-

versal and will be transferable to other software maintenance

organizations.

Before any discussion of software tools can be attempted, the new

organization, its role and functions, must be examined. Appendix B

contains a questionnaire that was developed to gain more knowledge

* about the Software Support Activity. The next chapter describes the

new organization from information gained from the questionnaire.

op1

1I. OVERVIEW OF THE SOFTWARE SUPPORT ACTIVITY

A. INTRODUCTION

The contents of this chapter are as follows: First, we explain what

the Software Support Activity is, and what its functions and responsi-

bilities are. Second. an overview of the role of headquarters elements

is given. Third, a description of the hardware and software is pro-

vided. Fourth, communication facilities are briefly detailed. Fifth, a

coverage of the backgrounds of the personnel is described. Next,

Software Support Activity personnel training is outlined. Finally, a

synopsis of the proposed system and prospective problem areas is

covered.

B. FUNCTIONS OF THE SOFTWARE SUPPORT ACTIVITY

The Software Support Activity is a Naval Security Group detach-

ment that was officially established 6 March 1987 to perform central-

ized software support for shore-based cryptologic systems and related

functions. It is located onboard Corry Station, Pensacola, Florida and

it will be a tenant command of the Naval Technical Training Center

(NTTC).

The Software Support Activity will assume software support

responsibilities for SIGINT Classification of Recognition of Classified

Emitters (SCORE) and the Mobile System Technical Data Facility

(MSTDF) on 1 October 1988. Between November 1987 and 1 October

1988, the Software Support Activity will be learning the SCORE and

12

MSTDF application software and related hardware and installed com-

mercial software packages.

SCORE is a HULTEC database system that produces reports which

are consumed directly by fleet units. It is being developed by NOSC

(Naval Ocean Systems Command) San Diego, California. MSTDF is a

master database facility that will be used to support deployed units and

is being developed by Engineering Research Associates (ERA) of

McLean, Virginia. Each of these systems will be installed at various

Naval Secinrity Group operational sites worldwide.

The Software Support Activity will be performing software main-

tenance on the SCORE and MSTDF application software and will also

make updates to any installed commercial software packages. The

maintenance that the Software Support Activity will perform includes

the following:

" Fixing bugs

" Making Class 11 or minor enhancements (Class 11 enhancements
are any upgrade that does not concern technical, monetary, per-
formance, specification, or schedule changes that affect configu-
ration identification (COI) tems) [Ref. 7:p. 2.22].

" Improving software performance and source code efficiency

" Any change or improvement that does not change the form. fit, or
function of the system, i.e., does not need Configuration Control
Board (CCB) approval

" Auditing each maintenance phase to ensure all acceptance criteria
have been meet

" Testing

13

" Configuration management

" ADP security

The Software Support Activity organization is depicted in Figure 1.

The Activity is divided into three departments: the Support Depart-

ment, the Software Maintenance Department, and the Quality Assur-

ance Department.

The Support Department's main focus is supporting the Software

Support Activity. It includes an Administration Division that performs

all necessary clerical functions and oversees the Software Support

Activity's budget. The Information Systems Division is responsible for

all installed commercial software packages and hardware. As such,

they are the activity's resident DEC VAX/VMS experts. The Informa-

tion System Division has nothing to do with the SCORE and MSTDF

application systems but is responsible for setting up and maintaining

all application libraries and procedures for using all software tools.

The Software Maintenance Department's main focus is the opera-

tional sites in the field. This department is directly responsible for

the performance and efficiency of the source code and data bases used

in the SCORE and MSTDF applications. The Software Maintenance

Department will go to the field to resolve problems if necessary and is

responsible for upgrading the field systems.

The Quality Assurance Department's focus is also on the field. This

departmlent's responsibility is to ensure no software is released with-

out adequate testing. It performs an Independent verification and

validation function. Besides worrying about new releases, the Quality

14

rue

L_

Assurance Department performs configuration management, software

library maintenance, problem report tracking, and auditing.

Specific functions and responsibilities of each department are

further detailed in Tables 1 through 3. Tables 4 and 5 outline specific

Software Support Activity responsibilities to the operational sites and

the operational sites' responsibilities to the Software Support Activity,

respectively.

OFFICER
IN

CHARGE
(I OFF)

FUTU'RE DATA BASE
STRATEGIC ADMINISTRATOR
PLANNING

SUPOR [SOFTWVARE QUAIrFY
PSRT T MAINTENANCE ASSURANCEDEATETDEPARTMENT DEPARTMENT
(I GS) (I OFF) (1 OFF)

INFO
ADMIN SYSTEMS SCORE MSTDF CM TEST(5 ENL) (I OFF) (I OFF) (1 OFF (2 ENL) (4 ENL)
(I GS) (3 ENLQ (5 ENL) (5 ENL) (I GS) (10GS)

(2 GS)

Figure I

Software Support Activity

15

TABLE 1

SUPPORT DEPARTMENT RESPONSIBILITIES

Function JDivision
Update & Maintain Commercial Info. Sys.
Packages ______

Maintain Back-up Systems Info. Sys.
Set-up & Maintain Application Info. Sys.
Procedures_______

Maintain Procedures For Using Tools Info. Sys.
Maintain Data Dictionaries Info. Sys.
Analyze Impact of Future DEC Upgrades Info. Sys

VAdministration Admin.
550 Admin.
Support Agreements Admin.
Hardware Maintenance Contracts Admin.
Budget Admin.

16

TABLE 2

SOFTWARE MAINTENANCE DEPARTMENT RESPONSIBILITIES

Function Division
Develop Class II Upgrades Maintenance
Perform Software Maintenance Maintenance
Resolve Problem Reports Maintenance
Evaluate Change Requests Maintenance
Conduct Training User Uaison

_____________________________ & Maintenance

Meet QA Standards Maintenance
Communicate With User User Liaison
Perform Trend Analysis & Trend Analysis
Future Planning ______

Field Tiger Teams Maintenance
Maintain System Maintenance Journal Maintenance
Maintain Error Fhstoy Maintenance
Deliver Scheduled Updates to Field Maintenance
Stations ______

Generate Periodic Status Report User Liaison
Update Problem Reporting Procedure User Liaison
Maintain Maintenance Statistics & Trend Analysis
Software Metrics________

Incr=rt QA Department Approved IMaintenance
Software Changes Into Baseline

17

TABLE 3

QUALITY ASSURANCE DEPARTMENT RESPONSIBILITIES

Function Division

Perform Configuration Management CM
Perform Quality Assurance CM
Train QA & Test Personnel CM & Test

Conduct Surprise Audits CM

Conduct Field Testing CM
Conduct Assist Visits CM I
Verify and Validate Software Product Test
Maintain Program History Test

Update & Develop Test Plans/ Test
Procedures & Data
Conduct Acceptance Testing of Class II Test
Updates

Conduct Acceptance Testing of Test
Problem Fixes

18

!--
*

TABLE 4

SOFTWARE SUPPORT ACTIVITY RESPONSIBILITIES TO
OPERATIONAL SITES

Function Site Elements
Involved

Conduct Surprise Audit On-site Software Per-
sonnel & Operations

Conduct Assist Visit On-site Software Per-
sonnel & Operations

Install Major Software On-site Software Per-
Upgrade sonnel & Operations

Conduct User Training Operations

Install Minor Software On-site Software
Upgrade Personnel

Conduct On-site Software On-site Software
Personnel Training Personnel

19

TABLE 5

OPERATIONAL SITE'S RESPONSIBILITIES TO THE
SOFTWARE SUPPORT ACTIVITY

Function Who Performs For Whom

Install Minor Software On-site SW SSA &
Upgrade Personnel Operations

Perform Emergency Fix On-sit~e SW SSA &
, Personnel Operations

Diagnose Unfixable On-site SW SSA
Problems Personnel

Perform Configuration On-site SW SSA &
Management Personnel Operations

Report Statistics Operations On-site SW
Personnel

On-site SW SSA
_Personnel

Conduct User Training On-site SW Operations
*" Personnel

Analyze Performance On-site SW SSA
Personnel

Revise/Report Local Operations On-site SW
Data Model Personnel

On-site SW SSA
Personnel

C. HEADQUARTER ELEMENTS

Commander. Naval Security Group (COMNAVSECGRU) is the

4headquarters element for both the Software Support Activity and the

operational sites supported by the SCORE and MSTDF systems.

COMNAVSECGRU is thus classified as the user of SCORE and MSTDF

20

-1 ' '' .. ,4 .'' ' . " '- . . .-",- '"- ' ,"." '-." ,."." .,." .: - -,-".'" '

and is responsible for post development maintenance of SCORE and

MSTDF and the software lifecycle support of these two systems.

SCORE and MSTDF have been developed under the control and

guidance of the Space and Naval Warfare Systems Command

(SPAWAR). SPAWAR is designated as the Project Management Office

and is responsible to ensure that the contractors develop SCORE and

MSTDF in accordance with its standards. SPAWAR fully defines con-

tractor responsibilities and system deliverables in the Shore Crypto-

logic Support System Computer Resources Lifecycle Management Plan

[Ref. 81.

As a further note, SPAWAR chairs the Configuration Control Board

(CCB) for SCORE and MSTDF. COMNAVSECGRU, each of the contrac-

tors, and the Software Support Activity are all members of the CCB.

Figure 2 indicates the relative relationships between all of these

organizations.

D. HARDWARE AND SOFTWARE

The Software Support Activity hardware consists of two VAX 8200

Programmer Workbenches, eight MicroVAX II computers, 50 VT 241

color terminals, and a VAX system to emulate the SCORE and MSTDF

systems.

One of the VAX 8200s will have the following productivity tools

and the FORTRAN and the Pascal compilers installed on it:

* VAX Language-Sensitive Editor

" VAX Performance and Coverage Analyzer

21

COMNAVSECGRU CONTRACTORS*

SOFIWARE OPERATIONAL
SUPPORT SITES
ACTIVITY

Figure 2

High-Level Organization Hierarchy

* VAX DEC/Test Manager

" VAX DEC/Code Management System (CMS)

* VAX DEC/Module Management System (MMS)

e VAX Common Data Dictionary (CDD)

The second VAX 8200 will be used as the Development System. It

will host the eight MicroVAXes. Each of the MicroVAXes will be con-

figured with both language compilers. The idea will be to use the

MicroVAXes to do any necessary compilation and to uplink to the VAX

8200 to access the main libraries. The VT 241 color terminals will be

installed at each desk within the Software Support Activity complex.

4.2

' 22

The Administration Division of the Support Department will have

one to two ALL-IN-1 Office Automation Systems. These systems will

use the WPS word processor and will include DECGRAPH.

Other Software Support Activity software will include the

following:

" EDT Text Editor

" VAX Symbolic Debugger Utility

" VMS 4.4 Operating System

" Micro-VMS 4.4 Operating System

" VAX FORTRAN

" VAX Pascal

" VAX Forms Management System (FMS)

• DEC CALC

" DEC GRAPH

* DEC SLIDE

" VAX DATATRIEVE

" DECnet

Some of the software tools listed above are covered in greater

detail in Appendix C.

E. COMMUNICATIONS

All systems within the Software Support Activity will be con-

nected via a local area network (DECnet). Personnel will be able to

access any system, terminal or processor, within the network through

the VT 241 terminal on their desk.

23

ar

Initially, data communications connectivity between the Software

Support Activity and the operational sites will not be possible. It is

planned for the future when one of the VAX systems will act as a host

computer for a connection to the PLATFORM network (DOD computer

resources network). This interface will provide worldwide access and

the ability to transfer data fies.

Although desirable, SCORE and MSTDF have not been built with

any real thought to distributing the processing or the data bases

between the operational sites. This was largely not done because each

of the developers considered it too hard to accomplish.

F. PERSONNEL

The Software Support Activity will be manned by 6 officers, 24

enlisted, and 6 government service personnel. The exact distribution

of each category is pictured on Figure 1.

Each of the team leaders of SCORE and MSTDF will be officers

who are Naval Postgraduate School computer science graduates. Each

team will be comprised of one E-7, two E-6s, and two E-5s. The hope

is to augment these teams with development contractor personnel.

Civilians working in the Quality Assurance Department are required to

have previous Naval Security Group operational experience. Civilians

hired for the Information Systems Division must have significant

previous VAX/VMS experience.

Two types of personnel exist at each of the operational sites:

operators and on-site software personnel. The operators have no pre-

vious software experience, but have operated highly technical

24

computer systems in the past. The on-site software personnel do have

some software experience. They are operational site assets but will

serve as an interface between the Software Support Activity and the

local command.

The on-site software personnel will help diagnose problems, per-

form small software updates, and are authorized to make emergency

software changes under strict rules and procedures.

G. TRAINING

Each of the enlisted personnel and most of the officers will have

had heavy field experience. They have either worked in the exact

same job as the operators who will be using SCORE and MSTDF or

they have worked in a closely related job. The software development

experience on the whole for all military personnel is quite limited.

Extensive training to include the following is required:

e 12 week Navy FORTRAN Programming Course

* 13 week Navy System Programmer Course (teaches VAX/VMS/
ORACLE/Data Structures)

* Navy SCORE and MSTDF Operator Training Course (to support the
systems, the programmers must be familiar with their operation)

* On-the-job training with the software developers (the program-
mers must become familiar with the software code that the con-
tractors have developed)

* DEC on-site courses. to include System Management. Cluster
Management. Device Drivers, Programming in the VAX Pascal

U Environment, and Performance Analysis

*A need also exists for a course in Data Resource Manage-
ment- how to use data dictionaries and data directories

25

The Software Support Activity is not responsible for user training.

It is only responsible for the software. Each operational site will ulti-

mately be responsible for its own training. The Software Support

Activity will assist and will play a role in training the on-site software

personnel, however.

H. POTENTIAL PROBLEM AREAS

The best aspects concerning the development of SCORE and

MSTDF are the standards and deliverables that were asked for in the

Shore Cryptologic Support System Computer Resources Lifecycle

Management Plan [Ref. 81.

It was specifically stated that the following procedures and stan-

dards would be used: top-down design, top-down analysis, structured

appoach, emphasis on the modularity of components, top-down

implementation, top-down testing, use of a Data Element Dictionary

(DED) as the primary data- base design tool, and designing the data

base to third normal form. [Ref. 8:pp. 11 -13, 17]

The following are considered deliverables of the system:

" Program Performance Specifications

" Program Design Specifications

" Database Design Document

" HIPO charts

" Interface Design Specifications

" Software Development Specifications (outlines the contractor's
understanding of what software needs to be developed)

" Configuration Management Plan

26

4 - 9'

" Quality Assurance Plan

" Computer Program Test Specifications

" Computer Program Test Procedures

" Computer Program Test Plan

" Software Development Plan (explains each contractor's approach
in designing the system software) [Ref. 8:pp. 10, 12, 14, 26, 44]

In addition, the following concepts and notions were requested:

" Functional Configuration Audit

" Range of testing to include: module testing, subprogram testing,
computer program performance testing, integration, and system
testing

" Functional Qualification Review

" Physical Configuration Audit

" Quality Assurance Mechanism (to provide for the detection,
reporting, analysis, and correction of program deficiences)

" The requirement that each module will have a well defined func-
tion with all inputs and outputs specifically identified and

A documented

" Source code will be checked to ensure that it is thoroughly docu-
mented with purpose comments that explain the function of eachmodule

" Source code will be audited to ensure it meets specifications, is
traceable to requirements, and conforms to coding standards and
conventions

* The delivered software will be verified that it can be compiled,
assembled, linked. loaded, and executed correctly from docu-
mented procedures

" The baseined documents will be evaluated for comforrnity, clarity,
completeness, maintainability, and to ensure that they accurately
represent the current software [Ref. 8:pp. 17 - 19, 22 - 26, 42]

27

Pr.. r..%*'**~***K2-., ~~~~

The standards and deliverables requested are all good. They rep-

resent what should be asked for. The problem is that there is no way

to enforce that the standards have been meet. The Shore Cryptologic

'. Support System Computer Resources Lifecycle Management Plan [Ref.

.* 8] is a guideline for the contractors to follow. There is no guarantee

that the source code really has been designed with software mainte-

nance in mind. COMNAVSECGRU has only been involved to ensure

operational needs are met. Software issues to date have not been a

COMNAVSECGRU concern.

Additional problems exist. Contractors were not given any spe-

cific standards to make the source code more maintainable. No test

equipment (performance monitors, simulators) or test support soft-

ware (scenario generators, test drivers, stub generators, test data)

were requested to be developed or turned over as deliverables [Ref.

8:p. 461. ERA is developing MSTDF with a Master Data Element

Dictionary. NOSC is not developing SCORE with one. The use of

Pascal could prove troublesome. Pascal is not recognized as a standard

programming language for Navy use. Although the notion of quality

assurance and configuration management are known, what exactly will

be developed in these areas is an unknown. The Software Support

Activity expects to write its own Quality Assurance Plan and Configura-

ion Management Plan. No Software Support Activity representation

has been involved in any of the reviews or plans for SCORE and

MSTDF. Although SCORE and MSTDF are both database systems, they

were developed without the use of data models. The requirements of

28

automated systems must change to ensure that data models are

required and a deliverable. For a non-computer user, SQL (The name

of the relational database language used by SCORE and MSTDF) is

difficult. Although most users can write queries, new users do have

problems writing efficient queries. The potential exists for SCORE

and MSTDF performance to be diminished until users become profi-

cient enough to write optimized queries. Ths Software Support

Activity will have to redo SCORE and MSTDF to allow availability of

system-wide data dictionaries and directories, strategic data planning,

data models (as previously mentioned), subject data bases, and

auditing. The lack of any planning by the contractors to allow future

distributed connectivity is a serious short fall. Users are going to want

to back up their systems and query remote data bases. These

capabilities will be extremely hard, if not impossible, to add on to the

base systems at a later date.

v 29

MI. CORE ISSUES OF SOFTWARE TOOLS

A. INTRODUCTION

The previous chapter gave an overview of the Software Support

Activity. Although all of the activities are important. the focus of this

thesis, as previously described in the introduction chapter, is to

examine software tools. When one speaks of using software tools, two

core issues emerge. The first is the notion of an environment, that is,

how well the tools selected work together. The second is defining

what the user really needs. Each issue is covered in subsequent

sections of this chapter.

B. ENVIRONMENT

This section begins with a general discussion of the problems of

software tools. Next it outlines the general requirements needed in a

software environment. Finally, it rates, using the criteria cited in sub-

section two, the Software Support Activity's tool set as an

environment.

1. The Problems of Software Tools

The major problem with software tools is that they quite

often are not integrated to form a useful whole. A number of

extremely powerful software tools exist and have been in use for a
number of years. The problem is one tool cannot be used in concert

with another tool. Software tools in general are incompatible and lack

uniformity. They are often language dependent and machine

Oil 30

'4.

dependent. Even when software tools are Installed on the same

computer system and the tools are based on the same programming

language. they still cannot be used together. [Ref. 9: p. 4051

What is needed is the creation of a software environment.

The ultimate goal of a software environment is to allow software tools

to be fully integrated.

Software tools are integrated if they share a standard repre-

sentation so they can communicate. To do so, they must share

common data structures and a common data base. In essence. what

occurs Is that the output from one utility, or tool, Is the Input to

another facility without translation.

Another desirable quality in an environment, although not

absolutely necessary, is the concept of non-modal. Environments are

either classified as modal or non-modal. Modal environments are

more conventional. They allow you to be in one, and only one, mode at

a time. If you need to use another tool, you must get out of the current

mode you are in and enter a new mode. Non-modal environments

allow you to remain within the context of one software tool while using

the facilities of another. For example, if you are using a debugging tool

to debug a program and want to make some editing changes, you can

use the facilities of the editor without ever leaving the debugger. To

the user, there is no difference in capabilities or view when he

switches from the debugger to using editing commands. There is no

action or conscious change needed to shift from one tool to another

31

and back again. To the user, it's just as if all tools are available within

the same context or framework.

2. General Reauirements for a Software Environment

Buxton and Druffel in their "Rationale for STONEMAN" [Ref.

101 give a brief synopsis of what general requirements are needed in a

good software environment. They are as follows:

" Provide a well-coordinated set of useful tools. The tools must be
fully integrated into a consistent environment. Tools must be able
to communicate with each other. Use of a subset of the tool set,
selected to match a particular user's working style, is desirable.

" Provide a consistent programmer interface. Interfaces should be
consistent and similar. Related functions across different tools
should be expressed in similar terminology.

" Be easy to use, easy to understand, and have a helpful user
interface.

" The software environment must easily adjust to and recover from
user and system errors. Meaningful diagnostic information also
should be provided to its users.

" Assist various levels of programmer ability.

" Easily allow the addition of new tools and the improvement,
update, or replacement of existing tools.

" Must enhance software quality issues of reliability, performance,
evolution, maintenance, and responsiveness to changing
environments.

" Provide a consistent environment from machine to machine, from
project to project.

" Support the entire software life cycle. Software tools developed
must meet the needs of the developer, maintainer, and manager.

32

I' .. I
C

I

Q.~

3. Rating the Software Support Activity Tool Set as an
Environment
Using Buxton's and Druffel's requirements [Ref. 101 pre-

sented in the previous section. both good and bad aspects can be

identified in rating the Software Support Activity tool set in an envi-

ronment (Note: See Appendix C for more detailed information on

some of the tools that comprise the Software Support Activity tool

set).

The VAX Software Engineering Tools' (VAXset) greatest

attribute. especially when compared with other software tools corn-

mercially available, is its level of integration. VAXset tools were

designed and built to work together. They are completely compatible

and, as a result of being designed to a common specification, the tools

can freely communicate with each other. They comprise a non-modal

environment. While working in the context of one tool, the facilities
of other tools may be called and used without ever leaving the scope of

the original calling tool.

VAXset tools not only work and communicate with each other

but they also provide a consistent programmer interface. All the tools

share a common user interface and provide a consistent response to

the user. As a result, the command language, prompts, and error

messages used are the same across all the tools.

VAXset tools for the most part are easy to use and easy to

understand. This is largely true because of the VAXset's high level of

integration and sharing of a single, common user interface. The user

33

only has to learn one way to interface with the computer rather than

learn a different interface for each tool he uses.

The VAX Language-Sensitive Editor provides extensive on-

line help facilities and programming assistance by providing pre-for-

matted templates to help program development. The VAXset thus

assists various levels of programmer ability because the programmer

determines how much on-line help he requires and to what degree he

wants to use the language-sensitive templates. Regardless of ability

level, the Language-Sensitive Editor helps the programmer generate

correct source code the first time.

The other VAXset tools help the programmer automate hard

to understand and difficult tasks. Version control and the tracking of

changes are made easier with the use of VAX DEC/CMS. VAX

DEC/MMS helps make the building of systems easier; however, in VAX

DEC/MMS, the setting of description files is awkward and compli-

cated. Every time a system needs to be built or rebuilt, or a program-

mer needs to use a specific version of the system, a description file

must be created. A description file defines what programs and files

must be linked and loaded to define the *system" being currently

worked on. This must be redone or recreated each time VAX/MMS is

used. Description file creation should be automated so that it remem-

bers what has been done in the past and is editable to allow minor

updates and changes.

The VAX Performance and Coverage Analyzer enables the

programmer to make performance and test coverage analysis routine

34

/

parts of everyday program development efforts, rather than a separate

task completed after the code has been totally developed. The

DEC/Test Manager provides an enormous assist to the programmer by

standardizing routine tests the programmer should run to see if his

code is consistent with already existing software and if it matches

organization standards. The power of this standardization is that the

test experts within an organization can dcsign the required tests

leaving the programmer more time to focus on writing code.

The VAX Symbolic Debugger is well respected within the

software industry. It is totally integrated with and is used in context of

the Language-Sensitive Editor. The Symbolic Debugger provides on-

line help and its diagnostic information is easy to understand.

N VAXset easily allows the addition of new tools. The Source

Code Analyzer, a new software tool, has recently been added. The

Source Code Analyzer is totally integrated into the previous version of

the VAXset and it adds a significant dimension when it is used with

the Language-Sensitive Editor and the Symbolic Debugger. (Note: see

Appendix D for more details on the Source Code Analyzer.)

Users do not need to buy the entire tool set. Tools can be

bought and used independently or added as desired. In addition,

existing tools in the VAXset can be customized and extended to meet

user requirements. For example, the Language -Sensitive Editor

templates can be customized to match an organization's programming

standards.

35

.I lf*.

The VAXset was specifically designed to increase pro-

grammer productivity, increase product quality, help manage com-

plexity, and increase the effectiveness with which programmers

implement. test, and manage programs. The VAX Performance and

Coverage Analyzer specifically addresses the performance issue. it

enables the fine tuning and optimization of source code for peak effi-

ciency. The VAX Performance and Coverage Analyzer will identifyr

performance hot spots, locations in code which because of heavy use

are likely candidates for improved performance. The VAX Perfor-

mance and Coverage Analyzer and DEC/Test Manager address the reli-

* ability, evolutionary, and maintenance aspects of code. These tools

together ensure new code remains within performance standards of

already existing code. DEC/CMS helps users respond to changing

environments. DEC/CMS will track all changes to code and enable the

* reconstruction of prior versions of the software system.

VAXset is not portable from machine to machine. It was

* never built to be. The tools of the VAXset are not the limiting factor in

this regard. The fact that VAXset was built around the VAX/VMS

operating system and VAX architecture is the restriction.

Although VAXset is not portable between computers. it Is

portable among sixteen different programming languages and across

different kinds of projects. Since VAXset was not built around a single

language, there is no need to maintain several incompatible support

environments for each application language used. An added advantage

of portability between different languages is that programs written in

36

one VAX supported language can call programs written in another VAX

language. How useful this multi-language capability will be is still

under a great deal of debate along with the whole related issue of soft-

ware reusability. It is believed that this capability may prove useful in

the transition to ADA. [Ref. 11]

VAXset was not designed for any particular kind of project.

The tools are generic enough that they fit the needs of most projects.

As previously stated, VAXset's greatest attribute is its level of

tool integration. VAXset's support of the entire software life cycle, on

the other hand, is its weakest aspect. This is not to say that VAXset

does not support life-cycle issues. It does. For example, the

DEC/Test Manager automated regression testing can be used, and

should be used, throughout the software life cycle. It will ensure new

code written is adequately tested and fits within the existing software

systems. The problem is that VAXset provides no tools that automate

the front-end of the software life cycle. VAXset has no software tools

that support analysis and design. It provides no means to tie software

changes to a project's original specification. As a consequence,

although a degree of configuration management exists in VAXset, it is

less than desired. A tie between all phases of the software life cycle is

needed. What VAXset does is emphasize the automation of pro-

grammer related tasks- those tasks that deal with the implementation

of source code.

In terms of Buxton's and Druffles's requirements [Ref. 10],

VAXset overall is an outstanding environment. Considering Digital's

37

support services, the fact that DEC has produced industrial strength

tools, and the degree of tool integration achieved make VAXset a

better environment than most UNIX- and LISP-based environments for

an organization involved in software production and maintenance.

C. DEFINE WHAT THE USER NEEDS

Determining what a user needs is critical in improving a process

or an organizational system. This is regardless of whether computer

automation is even being considered as part of the solution. What the

user needs is a function of the user's experience and ability level, the

tasks the user must perform, and the conditions under which the user

must work.

At the present time, no clear idea exists of what the user needs in

a software environment. All current work on software environments

has centered around the issue of tool compatibility. Taking a top-

down approach and pre-defining the specific tools a user needs in an

environment is typically not done.

Coupled with this lack of a top-down approach to environment

design, the environments that have been developed are software

development environments. To date, software maintenance environ-

ments have not been developed or defined. Only environments

emphasizing the development portion of the software life cycle have

been created to any useful degree. The need for state-of-the-art tech-

nical tools, however, is Just as important to software maintenance as it

is to software development activities. In fact, it is more important

38

,, - - ,,A

because maintaining software is a more difficult task than developing

the original software. [Ref. 9:pp. 404 - 405: Ref. 1 2 :p. 138]

The subsequent chapters will help lay the groundwork to develop

some requirements for a software maintenance environment.

43

U.-

IV. PERFORMING SOFTWARE MAINTENANCE

A. INTRODUCTION

Before the problems of a software maintenance organization can

be fully explored, an understanding of software maintenance in general

must be achieved. For purposes of this thesis, only source code main-

tenance will be examined in any detail. The additional functions such

as version control, quality assurance, etc. described in chapter 11 are

impacted by the basic process of program maintenance. These func-

tions will be described further in this thesis but only in regard to the

corollary role they play in program maintenance. With that in mind,

this chapter will provide an in-depth look at software maintenance as

it applies to performing the single function of source code mainte-

nance. As such, this chapter is divided into two parts. First, a defini-

tion of software maintenance will be provided to give the reader a feel

for the type of source code changes made in performing software

maintenance. Second, the eight steps of performing program mainte-

nance will be outlined.

B. DEFINITION OF SOFTWARE MAINTENANCE

Software maintenance activities are divided into three basic

* categories:

* Corrective Maintenance

" Adaptive Maintenance

" Perfective Maintenance [Ref. 13:pp. 492-497].

40

Corrective maintenance deals with the identification and correc-

tion of software errors and performance deficiencies. Adaptive main-

tenance involves changes needed to allow the software system to

adjust to changes in the outside operational environment. Perfective

maintenance is not limited to just minor changes. It Is maintenance

performed to make the system better, to enhance its capability and

performance, and to improve the documentation and software. It is

performed to enhance performance. improve cost-effectiveness,

improve processing efficiency, or improve maintainability. [Ref. 9:p.

221

C. EIGHT STEPS OF PERFORMING PROGRAM MAINTENANCE

The eight steps of performing program maintenance are as

follows:

e Understand the problem

* Understand the documentation

* Understand the source code

* Modify the code

* Debug

9 Test

* Perform regression testing

- Update documentation

Regardless of which of the three basic categories of software

maintenance is being performed (corrective, adaptive, or perfective).

41

each of the eight steps applies to some degree. Each of the steps will

now be fully described as subsequent sub-sections of this section.

1. Understanding the Problem

Understanding the problem is not limited to just software

development. A software maintainer, like a software developer, must

understand all needed requirements and functions of a new capability.

In addition, a software maintainer must be able to conceptualize a

problem a user is experiencing in the operation of a system and

understand it in terms of the user's language and understanding. [Ref.

14:p. 115].

Understanding what a user wants is an extremely difficult

task. Each software product and task must be understood by many

people. Each of these people has a unique viewpoint, degree of soft-

-~ ware sophistication, and interests. A common language for communi-

cation does not exist for the varied backgrounds and experiences

* . encompassing the large number of people involved in the software

maintenance process.

Understanding the problem, or user needs, is easier in soft-

ware development than In software maintenance. The developer must

determine what a user wants. Based on his interpretation, he

develops a software product that a user reviews to determine if the

developer has understood the user's needs. If the developer's

interpretation is accurate, then the developer proceeds with analysis,

design, implementation, and test phases of the software life cycle. If

42

J-7.

not, then the developer re-works his interpretation of the problem

and resubmiits the new version for further user review.

In contrast, the maintainer requires a more exact definition

of the problem. If the user has reported an operational bug, then the

maintainer must be able to duplicate the precise error. He must, also,

understand the error in terms of its execution complexity and its

relation to the rest of the software system.

When a maintenance programmer is designing a software

change, he follows the same software life cycle development steps as

the software developer. The maintainer's understanding of the prob-

lem must make his software change fit within an existing software

system. The maintainer does not build the rest of the system around

his software implementation of a problem solution, but must build his

implementation within the framework of an already existing system.

2. Understanding the Documentation

By choice, a maintenance programmer would prefer to use

documentation, instead of going to source code directly, to point him

to the segment of code where a program error is or to understand

what portions of a program will be impacted by an impending change

implementation.

Documentation is essential for software maintenance. If done

correctly. it adds significantly to program understanding. Documenta-

tion can express what a program does and why. It can reconstruct the

intentions of previous programmers and it can anticipate possibilities

for future change. Of the many kinds of documentation that can be

43

created, the most useful for software maintenance is high-level docu-

mentation that explains the overall purpose of the program and

describes the relationships of the various program components with

each other. [Ref. 9:p. 174]

If documentation is not adequate, however, it is better to not

have any at all than to have incorrect, imprecise, conflicting, overlap-

ping, or out-of-date documentation. [Ref. 14:p. 671

Farley [Ref. 15:p. 89] describes what should be included as

documentation:

* Product Overview and Summary

* Development, Operating, and Maintenance Environment

* External Interfaces and Data Flow

• Functional Requirements

* Exception Handling

• Early Subsets and Implementation Priorities

• Foreseeable Modifications and Enhancements

* Acceptance Criteria

* Design Hints and Guidelines

* Cross-Reference Index

To this list the following general concepts should be empha-

sized within a documentation system:

* need to know what the constraints are

* ability to make changes

* serve as a reference tool

44

" characterize acceptable responses to undesirable events

" document essential details

" list different kinds of changes- those that will not change and
those that may change

" document things you cannot figure out for yourself

" need different views and different levels of detail [Ref. 161

Martin and McClure [Ref. 9:pp. 177 -1871 identify four classes

of documentation that are needed:

" User documentation- instructions how to use the software

" Operations documentation- instructions how to execute the
software

* Program documentation- divided into two parts:

(A) Source Code- is documentation within itself, used to help
understand the internal structures of a program and how
programs within a software system interact with one another

(B) Historical Program Documentation- outlines how a software
system has evolved during its development and earlier main-
tenance phases and is comprised of:

(1) System Development Journal- includes system develop-
ment strategies, decision-making strategies, and reasons
for selecting a particular design alternative

(2) Error History-can expect to find future program errors
in code segments where heavy error occurrence has
occurred in the past

(3) System Maintenance Journal- how and why a system has

changed

3. Understanding the Source Code

Once the maintenance programmer has understood the

problem and understands any of the available software documentation,

he is still not completely prepared to make source code changes.

45

Before he can accomplish this task. he must understand the source

code that he will modify. Understanding the problem and the docu-

mentation should help the maintainer zoom in onto the particular

code segment or segments that apply to the specific problem under

consideration. Unfortunately, neither problem understanding nor the

documentation can directly tell the maintainer what is wrong. The

best they can offer is assistance, help towards finding the target seg-

ment of code.

Understanding source code is difficult. It typically wras not

written by the person doing the maintenance. It may not meet the

organization's programmning style and conventions. Its documentation

may, also, be completely out-of-date. Because of the previous reasons,

source code suffers a readability problem and it is often difficult to tie

the specific problem and a documentation specification to particular

code segments.

Program readability can be improved by the use of automated

software tools [Ref. 9:p. 3661. Cross-reference listings, symbol tables,

automatic flow charters, code reformatting tools, etc. can help change

source code into a more readable format.

Martin and McClure [Ref. 9:pp. 364-3701 make three other

suggestions that can improve program understanding. Their first sug-

gsestion is to allow software maintainers the time to develop a too-

down understanding of the software system. Second. maintainers

should constantly be seeking to improve documentation. Third. main-

tenance personnel can receive a very complete and in-depth

46

understanding of the system they are to maintain if they are allowed to

participate in program development. Maintainers should participate

in software design reviews and coding reviews, and should actively

participate in the testing phase. Software maintenance personnel can

greatly assist in the development effort because of their past experi-

ence and their insistence in helping developers release a more main-

tainable software product.

4. Modifying the Code

Once the segment or segments of source code that must be

modified are identified, it is important not to Just blindly go in and

change the code. Martin and McClure [Ref. 9:pp. 371-3761 specify

three steps that should be taken when existing programs are modified:

design the program change, alter the code. and minimize side effects.

Martin and McClure [Ref. 9:p. 3721 recommend a top-down

approach in designing a program change. The entire program should

be reviewed at a high level to determine what aspects will be affected.

Next, the code portions that will be changed are identified. Finally,

the specific change within each module and data structure are speci-

fied in complete detail. The program change design must take into

account any potential side effects the given change will have on other

unchanged segments and the program as a whole. If this is done, then

if the code is modified as designed side effects will not occur or at the

very least will be minimized.

47

5. Debug

No one writes perfect code. After the code is modified, it

probably will have software bugs in it and must be debugged. The

comments that follow apply equally well to the debugging phase after

modifying the source code as well as to looking for program errors

during a corrective maintenance phase.

Martin and McClure [Ref, 9 :p. 382] cite some interesting

findings concerning the debugging process.

First, the inability of experienced programmers to detect even obvi-
ous errors Is alarming. Second, computer-based debugging by the
original programmer appears to be one of the least efficient
debugging methods. Third, no single method used alone is very
good.

It is hard for programmers to find errors. They often look in

the wrong spot. They often have great difficulty in understanding an

error's total effect on the program as a whole. Programmers differ

greatly in their debugging ability and the number and types of errors

they are able to find. [Ref. 9: p. 3821

Group techniques have proved more effective in terms of

costs and the number and types of errors found than results achieved

using a single programmer. Group techniques include code walk-

throughs with several people or simply having two programmers work

together to debug a program. (Ref. 17:pp. 129 - 130: 28 -291

A combination debugging approach that pools different meth-

ods and uses more than one person is the preferred debugging

48

method. Using more than one programmer in the debugging process

will also improve programmer education and communication. Soft-

* ware debugging tools may aid the process as well. [Ref. 9: p. 3831

6. Test

After installing a software change, the maintenance pro-

grammer must test the modification. He cannot prove that his change

is completely correct without doing exhaustive testing, but he will
prove that the modification is free of the software bugs he is looking

* .~ for, that it performs a function, and that it is ready for regression

testing and revalidation with the existing software.

7. Perform Regression Testing

Even if unit testing is done correctly, the installed modifica-

tion cannot be trusted. Regression testing is necessary to ensure that

the change does not have a ripple effect on the system as a whole and

that the system performs as good as or better than prior to the

change. In addition, software must be tested to reaffirm its ability to

comply with system specifications, performance requirements, and

quality control standards. [Ref. 12:p. 1361 The only way to do this is

to develop standard revalidation procedures. These standards should

closely match the original program validation test cases and test data

* to allow results from the revalidation effort to be compared with the

original test results. Program regression will be obvious when these

two test results are compared. [Ref. 9:p. 3761

* Revalidation should be done by an independent group sepa-

rate from the maintenance shop. This independent test organization

4' 49

I 1 ... *10 V*.*'* 1-
* *- -.

should develop standard revalidation procedures for each program

and/or system of programs. This group should perform error analyses

and complexity profiles and ensure those program areas identified as

having high error rates and being highly complex receive heavy test-

ing. The revalidation procedures developed can be greatly aided by

software tools like cross-reference systems, test data generators, and

file comparison utilities. The most important point is that revalidation

procedures must be used. They never should be skipped. [Ref. 9:p.

3761

8. Update Documentation

As previously mentioned it is extremely important to contin-

ue to improve the available documentation and keep it up-to-date. All

changes to the source code must be documented and a version of the

pre-modified code also should be maintained. It is important to

remember to update user and operational manuals as well as the sys-

tem documentation to accurately reflect the software modification.

[Ref. 12:p. 154

50

V. COMPUTER PROGRAM COMPREHENSION

A. INTRODUCTION

It is not feasible to explore in depth all eight steps of program

maintenance. *Survey data on how maintenance personnel spend their

time shows that the dominant activity is reading and understanding

source code and documentation. This activity is obviously the primary

focus of the first three steps of software maintenance but it is also an

important activity in other steps as well [Ref. 61. For these reasons.

program comprehension will be the feature of this chapter and the

focus for the rest of this thesis. First the survey and its results will be

explained. Next, a review of the literature written on program com-

prehension will be presented. Last, the pros and cons of the three

program comprehension models described in the literature review

section will be addressed.

B. FJELDSTAND AND HAMLEN STUDY

Of the eight steps of performing program maintenance, the steps

that dominate are those that are related to reading and understanding.

FJeldstand and Hamlen [Ref. 61 studied how maintenance personnel

spend their time. They found the following in their study of 25 IBM

installations:

- STUDY REQUEST 18%

e STUDY DOCUMENTATION 6%

SWe STUDY CODE 23%

51

*IMPLEMENT 19%

*TEST 28%

*UPDATE DOCUMENTATION 6%

There are a number of important concepts to derive from this

study. First, almost half of a maintenance programmer's time is spent

reading and understanding what the programmer needs to do. It

should be noted that, of the three reading and understanding cate-

gories (the first three listed), the programmer spends the most time

studying source code. Comparatively, little time is spent actually

modifying the code, certainly less than one might expect. Testing

takes up a significantly larger portion of a maintenance programmer's

time, more so than in development activities. This is not surprising

because of the greater need to do regression testing in software main-

tenance. The maintainer must be totally satisfied that the software

change does not impact or degrade the rest of the software system.

4 Another note of interest is that the same amount of time is spent

updating documentation as in studying documentation.

Software maintenance is the dominant activity in the software life

cycle. Llentz and Swanson [Ref. 18:p. 1531 surveyed 487 data-pro-

* -, cessing organizations and found that both large and small organizations

spend on the average 44.4 percent to 53.5 percent of their time on

software maintenance. it Is equally obvious from the Fjeldstand and

Hamlen [Ref. 6] study that reading and understanding are the domi-

nant activities in software maintenance. For this reason, studying

52

program understanding has the greatest potential to reduce software

maintenance costs and software life-cycle costs in general.

Looking at the eight steps in program maintenance points out

another reason to study program comprehension. The activities of

implementation, testing, regression testing, and updating of the

documentation tend to be standardized. Most organizations specify to

their maintenance personnel how these activities will be completed.

How a maintenance programmer understands the problem, under-

stands documentation, understands source code, and debugs are

informal and highly individualized.

Understanding the problem and debugging are activities involved

in all programming. Certainly, debugging is universal to all program-

ming; however, understanding the problem in development work is

different from understanding in m -aintenance. This point has already

been made above. Activities related to reading and understanding are

the least well understood. This, together with the fact that they rep-

resent the core activities of software maintenance, points out why the

study and analysis of these activities are so important. The next sec-

tion provides an overview of program comprehension models.

C. COMPUTER PROGRAM COMPREHENSION MODELS

Not much has been written on program comprehension. but three

-nodeis have been proposed. The subsequent sub-sections detail each~

- one of the three models described in the literature.

a,, 53

1. Synitactic /Semantic Model

The syntactic/ semantic model is more comprehensive than

the other models. This model proposed by Schneiderman and Mayer

[Ref. 19] attempts to describe an all encompassing view of the pro-

*grammer's task. Besides defining program comprehension, their

model additionailv incorporates the following programmer behaviors:

program composition, debugging, modification, and the learning of

new programming skills.

The backbone of their model revolves around two basic

themes. The first is the role of three different levels of memory:

short-term memory, long-term memory, and working memory. The

second is the difference between syntactic and semantic knowledge.

Schneiderman and Mayer [Ref. 19] describe short-term

memory as the means through which information from the outside

world enters the cognitive process. Little, if any, processing is done
on information at this memory level. In contrast, long-term memory

* . contains information that has been fully processed and organized. It

represents an unlimited store of knowledge that is available for recall.

Working memory is a bridge between short-term memory and long-

term memory. It is the epicenter of the problem solving process. It

pools information that is fed into the human cognitive system via

short-term memory with relevant, associated knowledge that it calls

from long-term memory. The result of this mixing in working mem-

ory Is the genesis of a problem solution that can either be produced

and forgotten or stored in long-term memory for future reference.

Mi 54

'U, * *~*~~ -. , * p -.7

Because of the nature in which each of the three levels of memory

interact on Information, Schneiderman and Mayer [Ref. 19] have in

effect produced a broad information-processing model. [Ref. 19 :p.

2201

Their view of syntactic and semantic knowledge is aligned

with a computer scientist's version of these terms as they apply to a
programming language. "The syntax of a language is the way that

words and symbols are combined to form the statements and expres-

sions." [Ref. 20:p. 89] Semantics is "the meaning of well-formed

expressions." [Ref. 21 :p. 2-121 Both, according to the syntac-

tic/semantic model, are stored in long-term memory. [Ref. 19:p. 2211

Particularly illuminating is the difference in ease of learning

A. syntactic knowledge and semantic knowledge across programming

languages. Although it is hard to learn a first programming language,
learning a second programming language is easy provided the two

'S. languages share similar semantic structure (i.e., both are structured

languages). If they do not. then learning the semantics of the second

language actually can be more difficult than learning the first language.

Syntax knowledge is just the opposite. The closer the syntax of two

languages is the easier it is for a programmer to confuse and incor-

rectly substitute one language's syntax for another. The further apart

the two 'anguages are, the easier it is for a programmer to keep each

language's syntax rules separate. [Ref. 19:p. 2211

The Schneiderman and Mayer [Ref. 191 view of program

comprehension may be termed a pure, bottom-up approach. It also

55

relies heavily on George Miller's "process of chunking" [Ref. 22:pp.

8 1-971 that was used in describing limits to processing information.

In the syntactic/semantic model, the initial step a program-

mer takes in understanding a program is to read the source code. The

source code is read first for syntactic understanding. Syntax knowl-

edge Is used to provide a link to develop a higher-level semantic

understanding of what the program functionally does. Syntax is not

* learned line by line but is learned in pieces. These pieces of knowl-

edge are "chunked" [Ref. 221 together to form bigger pieces of under-

* standing until the entire program is comprehended. Naturally, this

.chunking process" is aided by the use of modular program design

and structured programming languages. [Ref. 19:pp. 224 - 2251

Schneiderman and Mayer [Ref. 191 emphasize that, although

* low-level syntax details may not be fully understood, it is still possible

to develop a high-level comprehension of the program. In addition, it

is also possible to fully understand a program on a low level, yet never

achieve a full, high-level understanding of the program as a whole.

2. Hypothesis Model

While the syntactic/semantic model defines a broad informa-

tion-processing theory, Brooks' (Ref. 231 hypothesis model focuses on

* the more narrow process of program comprehension. The basic idea

of this theory is that when a program is written it is constructed from

a series of mappings from a problem domain to a program domain. A

program is comprehended by creating a hypothesis that bridges the

gaps between domains. Specifically, a hypothesis, whether on a high

56

or low level, will link the problem domain and all intermediate

domains with the program domain. [Refs. 23, 24, and 25]

The process of creating a hypothesis is iterative. Brooks [Ref.
* 231 specifically states that, as soon as a programmer has any knowl-

edge about a program, he makes an initial high-level hypothesis about

how the program works. The programmer tries to gain confirmation

that his hypothesis is correct by examining source code or other

related documentation in an attempt to find a match. If he does not

find an exact match he will refine his hypothesis or change it to create

a closer link with the code and documentation. It is important to note

that hypothesis generation Is done in a top-down fashion, achieving

greater refinement and elaboration. [Ref. 23:pp. 544-5501

Hypothesis generation is an on-going process. It continues

until the programmer feels the successive versions of the hypotheses

have been fine-tuned enough to be relatively close to the actual pro-

gram code or documentation. Although the concept of "relatively

close" is not well defined, it occurs when actual data structures and

operations defined within the hypotheses can be either found or

closely associated with similar features and details in the program

code or documentation. Brooks gives a special definition to the code

line related to these features or operations. He defines them a s

beacons. [Ref. 23:p. 548; Ref. 2 5:p. 1271

Beacons play a key role in further refinement and specifica-

tion of the evolving hypotheses. In particular, beacons are tied to lines'

of code. Beacons become the means through which lines of code are

57

bound to the hypotheses. Of significance. the possible existence of

program beacons has been strengthened through experimental results.

Wiedenbeck's [Ref. 261 research supported the theory that beacons

provide comprehension focal points for experienced programmers.

[Ref. 261

Brooks' [Ref. 231 hypothesis model also implies specific doc-

.J. umentation needs. Because initial hypotheses are general and broad in

nature, high-level documentation, such as design descriptions and

user's manuals, must exist. In other words, the generation of initial

hypotheses may be limited by using source code alone. Although

Brooks [Ref. 23] points out that redundant documentation is not

desirable, a certain level of documentation at all levels of hypotheses

generation must exist, because it is documentation which contains

information that will allow binding between domains to occur. [Ref.

23:pp. 551-5521

In Brooks' [Ref. 231 comprehension of computer programs

theory, he stressed three distinct concepts that defined why pro-

grammers exhibit different levels of ability in comprehending any one

given program. Programmers differ in the degree of programming

ability they have, in the amount of specific problem domain knowledge

they have available to apply to hypotheses generation, and in the vart-

ety of comprehension strategies they may employ. The first can be

improved with more experience and training. The second may be

improved by documentation that clearly describes the rationale behind

a program's specification. The third may be aided by merely alerting

58

and educating programmers about the strategies available for their use.

[Ref. 23:pp. 553-5541

3. Slice Method

The third and final model, the slice method, is considered a

debugging method [Ref. 27:p. 3811. Although debugging and program

comprehension are considered two distinct tasks, there is a common-

ality between them. Namely, before a programmer starts to debug, he

already understands to some degree, or at least should, the program

he is trying to correct. The slice method gives an explanation of how

much a programmer needs to understand of the program he is

debugging.

Regardless of methodology (function driven versus data driv-

en) or implementation (top-down as opposed to bottom-up), a

program designer or writer is trying to decrease the amount of infor-

mation he must comprehend at one time. The same is true for a pro-

gram maintainer. The need exists to divide a large program into parts

whose function and scope of action are easier to conceptualize.

Slicing performs this decomposition. It is a means to

decompose already-written programs into subsets of program behav-

ior. The idea is the programmer is interested only in looking at a

specific behavior of a program at one time, rather than the program as

a whole. By applying the correct slicing criteria, all code but what is

irrelevant to the specific behavior can be stripped away. Although all

Irrelevant code is removed from view, what remains is code that is

still capable of demonstrating the desired subset behavior of the

59

'MIMi

original program. The slice is generally composed of noncontiguous

fragments of the code. [Ref. 28:p. 439: Ref. 29]

Obviously, there is more than one way to decompose a pro-

gram. Depending on the slice criteria, what results is essentially a

different view of the program. Each view offers a different context in

which to understand the program. Some views will be better for con-

verting certain errors then others. In addition, specific views will also

be better to suggest what the error is.

Ignoring code that does not apply to what you are trying to

change Is not limited to the debugging task. It applies equally well to

software maintenance. Except in maintenance, the need is to ignore

all code but the code portion that must be improved or replaced. [Ref.

28:pp. 447-448: Ref. 29

D. PROS AND CONS

This section attempts to highlight the strong and weak points of

each of the three computer program comprehension models.

1. Syntactic/Semantic Model

Schneiderman and Mayer [Ref. 19] are correct in their analy-

sis of low-level and high-level understanding of a program. It is possi-

ble to fully understand a program on a low level yet never achieve a

full. high-level understanding of the program as a whole. For a main-

tenance prograrnmer. it is much more disastrous to err by not under-

standing a program on a high level than on a low level, because of the

global consequences any modification made may have on the program

as a whole. If the maintainer does not understand the program at a

60

. :,

high level, how can he even hope to appreciate the effect of the

changes made across the program's entire scope?

In addition, there is a keen distinction between program

comprehension and program composition. As already described, in

Schneiderman's and Mayer's view [Ref. 19], comprehension is bottom-

up. It moves from syntactic to semantic knowledge. Program compo-

sition on the other hand is top-down. The programmer fully solves

the programming problem on a semantic level only. He employs his

syntactic knowledge in a straightforward, almost mechanical, manner

when he writes code. The task is easier when you can separate the

use of syntactic knowledge and semantic knowledge, as in writing a

program. This is in contrast to when you understand a program where

you are always using a mix of the two. [Ref. 19:pp. 223-2251

This model's description of the chunking process is also a

positive factor. Programmers do chunk together closely related por-

tions of code.

The emphasis on a bottom-up approach is a negative aspect.

In maintenance, the need is to initially start with a top-down

approach. Bottom-up is typically used only after the maintainer has

identified the code segment that has to be changed. Once identified,

the maintainer may take a bottom-up approach to understand pre-

cisely what is going on in the code step-by-step.

The Syntactic/Semantic Model also errs in making the read-

ing of source code the initial step in program comprehension. Read-

ing source code as a first step is not what we want to do. It may be

61

what always has been done only because documentation has been so

poor (i.e., incomplete, out-of-date, conflicting, etc.).

2. Hypothesis Model

The hypothesis model allows for a top-down approach. It

matches a maintainer's need to have a high-level view of what the user

needs (operational sites) and what the software system does.

It has levels and steps. It accounts for different degrees of

program comprehension as the degree of experience and exposure

increases.

The hypothesis model describes the notion of iterative

understanding. Although it is desirable for a program maintainer to

fully understand the code they are maintaining, certain situations may

occur to prevent this from happening. The programmer responsible

for a particular section of code with a bug in it may be out of town.

Another maintainer may be able to learn enough about the code to

make the change. His level of understanding of the given code seg-

ment changes through the maintenance process. The maintainer may

have walked in with only a high-level overview understanding of the

target problem code, but by the time he has corrected the problem he

will have gained greater knowledge of the problem code segments.

Even so, the knowledge he will have gained will not be as great as that

of the assigned maintainer.

An additional advantage of the hypothesis model is its con-

cept of beacons. Beacons are means of abstraction. They are a way for

a programmer to give a name to a code section. When a programmer

62

writes code or is in a debugging phase, he does not need to re-read

each line of code to know what is going on. He sections it, or
"chunks" it, and ties a name to the section. The name is the beacon.

'P The beacon can be a variable name or a short phrase explaining the

function of the code block.

3. Slice Model

The slice model is not a model of comprehension but a

method to help improve program comprehension. It gives a variety of

views of a program and can be used either in a top-down or bottom-up

* fashion. It provides a means to zoom in on relevant lines of code and

to Ignore others. For this reason, it is a useful means to reduce pro-

gram complexity. The slice method allows source code lines that are

related to each other but texturally disjoint to be viewed together.

The slice method offers one distinct advantage over the other

two models. The degree of program comprehension required to use

the slice method is significantly less. In fact. it is extremely well

suited to being used in situations when the program to be maintained

is large and unfamiliar to the maintenance programmer. [Ref. 28:p.

439; Ref. 291

4. Summar

Of the three, Brooks' hypothesis model is the most closely

aligned with the software maintenance task in general. Its top-down

approach and iterative understanding most closely explain what the

maintainer must do. As such, Brooks' theory will be used as the model

of program comprehension in the rest of this thesis.

63

VI. WHAT BROOKS' THEORY PREDICTS

A. INTRODUCTION

If Brooks' theory is accepted as a reasonable model of how a pro-

grammer tries to understand a program and its associated

documentation, then what does Brooks' theory predict will be the

potential problems of a software maintenance organization? The rest

of this chapter will explore the implications of Brooks' Hypothesis

Theory as it applies to this question.

B. PREDICTED POTENTIA4L PROBLEMS

Brooks emphasizes the need to develop different levels of under-

standing and to develop this understanding in an iterative, top-down

fashion. If this is true, one of the problems a maintenance organiza-

tion will face Is how to package knowledge at discrete levels. Brooks'

theory predicts that programmers look only at documentation that

corresponds to their current level of understanding rather than look-

ing at all available documentation. Brooks' theory also predicts that

programmers gain knowledge about a program by first achieving a big-

picture, top-level view. They attempt to understand a program from a

general, functional level, before they understand specific lines of code.

Programmers will understand what problem a particular program Is

trying to soive before understanding how the program code solves the

problem. A maintenance organization thus faces a problem in deciding

what types and forms of documentation and software tools are needed

64

to aid the development of iterative understanding achieved in a top-

down fashion. In addition, Brooks' theory suggests that understanding

the original problem the software design organization was trying to

solve, the specifications they were working with, and the why they

choose certain design decisions will be critical information for a

maintenance organization. In fact, this information must be gained

and well understood before other knowledge can be adequately

achieved.

Brooks further specifies a programmer's ability to understand a

program in a top-down, iterative fashion as hypothesis building. To

recap what has already been expressed in the previous chapter,

Brooks' theory predicts that a programmer's understanding must

move through a series of domains, from problem domain, to specifica-

tions domain, to database domain, to application domain, to program

(computational structures) domain. Thus, documentation and software

tools chosen must help the mapping from one domain to the next.
They also must allow a programmer to generate hypotheses that

answer what, how, and why questions about the interrelationships

between the problem domain and the program domain. Tools that

help hypothesis generation cannot be restrictive but must allow

hypotheses about how the program works to evolve as new information

and understanding are grained.

\ ~*Another problem that Brooks' theory raises is the issue of pro-

A.grammer variability. Because a programmer's level of understanding

changes with time, experience, and exposure, all programmers within

65

an organization will not understand the software system they are

maintaining to the same level or to the same degree. Numerous stud-

ies have been completed that indicate programmer ability varies as

much as 26: 1, 10: 1, and 5: 1 [Ref. 30:p. 191. How does an organization

deal and cope with a variance as wide as this in programmer ability?

Since programmers vary so widely in ability, this implies that each

programmer will have a different view and understanding of the

program he is maintaining. A maintenance organization cannot run

efficiently, let alone survive, the chaos that would reign if each

maintenance programmer made changes to source code according to

his own hypothesis of how the program currently works and how it

should work. A significant problem for the maintenance organization

will be how to develop, maintain, and enforce one common program

view for the organization. A common understanding of both the

desired application behavior and the computational model to be

applied in developing the system is necessary.

If the problem of different programmer views were not enough.

the views of users, management, and the maintenance organization are

all also widely different. This occurs for the same reason as it does

among programmers. Users, management, and the maintenance

organization have different levels of experience and expertise. Each

has its own different focus on the role, function, and meaning of the

software system. Each comes to its own specific view from its own

unique perspective. How does each of these groups communicate its
different viewpoint to the others? This question is of greater concern

66

to the maintenance organization than to the users and management

because the maintenance organization must keep the user and

management happy at all times. For the maintenance organization, the

communication problem not only concerns how it should or how it can

communicate Its view of the software system to users and manage-

ment, but also how to understand what the user and management are

trying to say from the perspective of their viewpoint and level of

understanding.

Brooks' theory predicts that the way to deal with the variance in

views between users, management, and the maintenance organization

is to develop a "theory of the field." The theory of the field contains

all information about the problem domain, the specification domain,

the database domain, the application domain, the program domain,

and all the ties and interrelationships between each of these domains.

The theory of the field will allow the Software Support Activity to

structure the knowledge about the field (the domains and their inter-

relationships) in order to manipulate, preserve, teach, and re-capture

it. Developing the theory of the field would be like developing a

curriculum or writing a book or a seminar. The theory is the joint

expertise that the Software Support Activity provides users and

management. The theory of the field that the Software Support

Activity develops should not be haphazard. but planned. The Software

Support Activity must know what it stands for, what its mission is.

67

L .

Other authors support Brooks' theory. The most notable are

Martin and McClure, MacLennan, and Curtis, Krasner, Shen, and

Iscoe.

C. MARTIN AND McCLURE

.As already described, Martin and McClure [Ref. 91 stress the

importance of high-level documentation for software maintenance

[Ref. 9:p. 174], the need for different levels of documentation [Ref.

9:pp. 180-185; pp. 366-367], and the need for maintainers to get

involved early in the life cycle [Ref. 9:p. 3671. This last issue is pre-

sented by Martin and McClure [Ref. 9] as a means to allow a maintainer

to learn the background of a software system, the problem domain and

specifications, and to understand why certain design decisions were

made and implemented.

D. MACLENNAN

MacLennan [Ref. 31] also supports the need for different levels of

documentation and understanding. MacLennan defines fifteen

requirements of a computerized software development environment.

Of the fifteen, seven of his specifications apply directly to Brooks'

* theory. They are as follows.

1. Simulated World

A software environment should be able to represent the

entire software life cycle. To do so, an environment must be able to

represent and manipulate within the computer a large number of

objects. both current and future, and their interrelationships. Some

68

examples of objects are Data Flow Diagrams. code, people, specifica-

tions, and computer resources. In order for a software environment

to model the software life cycle, it must provide a simtilated world.

For an object that is concrete it may not be possible to represent that

object directly in the computer. The object may have to be simulated.

The same may be true of the large number of relationships between

objects that may be represented. If a simulated world were achievable,

it would allow mapping from one domain to another and allow trans-

formations among and between domains. [Ref. 31: p. 1-21

2. Persistence

A large software project typically takes years to develop. As a

consequence, the objects and relationships within an environment do

not go away. They must be stored for the life of the project. through

implementation and maintenance. until the software is no longer used.

If this information were maintained for the life of a project, then a

maintainer would have access to what was the original problem that

needed to be solved and what were the original specifications. [Ref.

31:p. 1-21

3. Uniformity

Despite the fact that objects and their relationships vary

widely, they must be treated and manipulated in a uniform way. If you

are to map from one domain to the next, then a uniform way must

exist to do the translation between domains. (Ref. 31:p. 1-21

69

4. Flexibilit

Software projects evolve. They change with time. As a result,

the objects and their relationships also must change. A software envi-

ronment must be flexible enough to allow these changes to occur

almost naturally with little or no impact on users. Not only do soft-

ware projects evolve, but so also do the hypotheses programmers

make about programs. Flexibility to change these views easily is highly

desirable. [Ref. 31:p. 1-31

5. Alternate Representations

An object may have more than one visual representation.

Programmers view objects in different ways based on past experience

and exposure. Their different views should be supported. [Ref. 3 1 :p.

e 1-31

6. Multiple Views

When an object does have alternate representations, if one of

its views is changed. then you want all visual versions of the object to

be updated relative to the change. All views must be made and remain

consistent. The consistency of views and understanding within an

0; organization has already been stressed. [Ref. 31:p. 1-31

7. istoz

The computer can provide immeasurable assistance by keep-

ing track of a project's history. What should be recorded is changes to

specifications, personnel, design decisions, code. goals. etc. What

must also be recorded is the known cause of the change. [Ref. 31 :p.

1 -31

70

Project information and programs change. Often what has

changed in the past, will be changed again in the future. Knowing the

reason why something was changed, helps personnel to design and

implement better solutions.

E. CURTIS, KRASNER. SEIEN, ISCOE

Curtis, et al. [Ref. 321 have produced experimental results that

supports a large portion of Brooks' theory. Their survey of nineteen

projects from nine companies yielded results that not only supported

the notion of programmer variability and their resultant differences in

degrees of knowledge [Ref. 32:p. 971, but also stressed the importance

of treating the development and maintenance of large software sys-

tems as largely a learning and communication process. [Ref. 32:p. 1021

In fact, Curtis, et al. [Ref. 321 propose that the processes of learning,

technical communication, negotiation, and customer interaction are

among the most crucial to any project's success. [Ref. 32:p. 1031

They found in their studies that software development contains a

large commitment of time dedicated to learning. The knowledge

required to develop the system absorbed most of the project team's

time during the early stages of the project, because 'much of what

occurs during design is not designing, but learning required in order

to design successfully." [Ref. 32:p. 1001

This finding applies equally well to software maintenance. Design

is involved to some degree regardless of which of the three categories

of maintenance is being performed (corrective, adaptive, perfective).

Considering that 55 percent of all maintenance done is perfective

71

(maintenance done to enhance the capability and performance of the

system and to improve the documentation and software) just adds to

the claim that learning consumes a significant portion of maintenance

time. For the reader's interest, corrective maintenance consumes 20

percent of the total time spent on maintenance and adaptive con-

sumes 25 percent [Ref. 18:p. 681. But perhaps the more telling find-

ing of the Curtis, et al. survey [Ref.321 is the documentation of the

tremendous amount of time most projects spend rediscovering infor-

mation that had been generated by the users and originally held by the

design organization [Ref.32:p. 101]. If design organizations spend a lot

of time on this task, then maintenance organizations will spend even

more time because of the time difference inherent between a project's

inception and its maintenance phase.

Technical communication and negotiation become imperative to

ensure that organization members share the same model or view of

how the system should operate [Ref.32:p. 1001. Curtis. et al. [Ref.32]

presented an idealized scenario of how an organization resolves differ-

4 ences between each team member's individualized view of the project.

Although all members start out with their own mental model of what

should be done, group members start to form coalitions with other

members who share similar views. The coalitions are formed to argue

their group member points of view. The final stage of this negotiation

process is marked by the resolution of all differences between the

coalitions and the development of a team consensus. [Ref.32:p. 101]

72

Curtis, et al. [Ref.321 observed, however, that although the forma-

tion of multiple coalitions was desirable in order to gain the benefits of

alternative views, in practice this rarely happened. A single individual

or group formed a dominant coalition that took control of the project

and dictated how the system should operate. "In fact, in some cases

the members of the dominant coalition even acknowledged that they

had formed a steamrolling group to move the project in the direction

they believed it should go." [Ref. 32:p. 1001

Their finding, because of its simplicity, tends to downplay the vast

amount of communication found to be necessary to ensure that all

members of an organization share the same understanding of the sys-

tem. The amount of communication needed is so great that Curtis, et

al. [Ref. 321 make two recommendations to deal with this problem.

One is the recommendation to develop formal organizational struc-

tures that will help communication flow horizontally across an organi-

zation rather then just vertically upward. The second is to augment

informal communication methods with better "coordination tools."

[Ref. 32:p. 1031

Curtis, et al. [Ref. 321 fully support Brooks' theory that program-

mers and users share different domains of knowledge [Ref. 32:p. 961

and the degree of difference, if great, can adversely impact the future

of the project [Ref. 3 2 :p. 991. Based on their survey, Curtis. et al. [Ref.

321 recommended that one organization source be identified to clarify

user requirements to the organization [Ref. 32:p. 1021.

73

'P

It is already obvious that the Curtis, et al. [Ref. 32] finding

described above provides the Brooks' theory significant support. But

what perhaps sheds more light on the Brooks' theory is Curtis, et al.'s

[Ref. 321 identification and definition of an organization expert that

they term the "super-conceptualizer." [Ref. 32:p.991 Communication

and education of all organization members to ensure that they share

the same common model of how the software system should operate is

the most significant function of the super-conceptualizer [Ref. 32:p.

102]. The super-conceptualizer is the person or a small group of indi-

viduals who are "the keepers of the product vision." [Ref.32:p. 99]

They are the application experts who are skilled at communicating

their technical vision. A super-conceptualizer's unique vision is the

ability to "map between behavior expected of the application system

and the computational structures required to create this behavior."

[Ref. 32:p. 991 This is done despite the finding that super-conceptu-

alizers often admitted they were not good programmers. [Ref. 32:p.

*: 991

Super-conceptualizers are further categorized by Curtis, et al. [Ref.

32:p. 991 as being

...dedicated to and consumed with the technical performance of the
project. In so doing, they frequently became the primary source of
coordination on the project and assumed, without formal recogni-
'Lion. many management responsibilities 'or ensuring technical
progress.

74

F. OTHER PROBLEMS

This Is not to say these are the only problems the organization will

face. There are others. Some of the more important ones include

how to manage inevitable changes in requirements. how best to deal

with the overwhelming complexity of large programs, how to accom-

plish version control and configuration management of multiple copies

of the operational system. how to protect the system so only key per-

sonnel can make changes, and how to offset or counter the efficiency

versus maintainability dilemma. The Software Support Activity has two

goals. One is to make source code more efficient and the second is to

write code that is easy to maintain. Efficient code is not easy to

understand nor Is it easy to modifyr. For these reasons, efficient code

is the antithesis of code that is easy to maintain.

G. 1MPLICATIONS FOR THE SOTWARE SUPPORT ACTiVITY

Although there are other issues that a software maintenance orga-

nization must face, the premise of Brooks' theory and the supporting

work of Martin and McClure. MacLennan. and Curtis, et al. is that

communication and learning issues are the most critical for a software

maintenance organization. Although these critical concerns are sup-

ported by several authors, these issues cannot be proven to be signifi-

cant for the Software Support Activity at this time. What would be

valuable is to plan to survey the Software Support Activity one year

after it assumes software maintenance responsibilities to determine

what the Software Support Activity considers its most difficult prob-

lems. The problems the Software Support Activity actually

75

encountered could then be compared to the problems predicted in

this thesis. Regardless, considering the overwhelming evidence that

identifies communication and learning as the core, critical issues for

any organization, it is prudent to identify and plan methods and

measures to help reduce their impact. The next chapter will outline

some ideas and plans to help reduce any negative influence the lack of

proper communication and learning may have for the Software

Support Activity.

76

VII. IMPLICATIONS FOR MANAGEMENT AND TRAINING

A. INTRODUCTION

Brooks' theory does not say anything about software tools. The

theory is, however, specific about documentation. According to the

theory, documentation must present information in a top-down fash-

ion and provide levels of understanding. The premise of this thesis is

to carry the same ideas Brooks' theory predicts are important for doc-

umentation and understanding of programs to the selection of soft-

ware tools. Based on what Brooks' theory says is important, how d,

the tools selected for the Software Support Activity rate?

B. RATING THE SOFTWARE SUPPORT ACTIVITY TOOLS SET

In Chapter III, the Software Support Activity tool set received an

outstanding rating as an environment. The level of integration of the

Software Support Activity's tool set is one of the dominant reasons

why it received such a high mark. Brooks' theory reinforces why an

integrated environment is desirable. An integrated environment

allows mapping or translations between software tools. Since the

Software Support Activity's tool set is also an example of a non-modal

environment, the translation of needed information between each tool

almost seems transparent because tools can be used within other

tools.

Of all the requirements of Buxton's and Druffels' environment
'~f. standards [Ref. 10], only one aspect was not fully met. This was the

77

%k :!. zc.m

environment requirement to support the entire software life cycle.

None of the tools in the Software Support Activity tool sets automate

the front-end of the life cycle. None of the tools helps with analysis

and design. None of the tools deals with problem definition or linking

specifications with lines of code. All the tools emphasize the pro-

gramming task. This is not surprising. The whole issue of environ-

ments, even a definition of what an environment means, is still hotly

debated within the software community. "Software support environ-

ments are still too incompletely understood to specify precisely."

[Ref. 33:p. 421 It also is not known whether environments will actually

help productivity. The software community Just thinks environments

will. Boehm, et al. [Ref. 331 have produced the only study results; the

availability of software tools improved productivity by 15.6 percent

[Ref. 33:p. 411.

Environments are in their infancy. They have been talked about in

* the literature for only the past couple of years, but it "takes typically

17 years (±2) from concept inception to commercialization for an

automated software technique" [Ref. 1:p. 231 to become widely

accepted.

The same is not true for software tools in general. The notion of

-~ software tools is a well-known and accepted concept. Literally thou-

sands of tools e. xist and the vast majority are programming aids. Pro-

grammers are the people who have developed software tools. They

have developed tools that help automate tasks that they, the pro-

grammers, deal with on a day-to-day basis. Their view has not

78

necessarily been one of implementing an integrated tool set nor

developing a tool set that supports the entire software life cycle or

mappings from one knowledge domain to the next. Based on a

programmer's narrow, specific view, the software tools available are

largely bottom-up tools. The "top" of the software engineering

process and its automation is missing [Ref. 1:p. 1161.

The same can be said for most of the tools in the Software

Support Activity tool set, but there is a difference. It is unusupl for a

set of tools to be as integrated as the VAXset. At present. there are

two directions an organization can go in selecting software tools. It

can select many different tools, and there are many good software

tools available, or it can select a small, integrated set.

The advantage to selecting a large set of tools that are not inte-

grated is a new useful tool can be added at any time. The disadvantage

is no one will learn how to use all the tools. For a small, integrated

tool set, the learning process is easier and as a consequence all the

tools will be used more effectively. The disadvantage is that when new

software tools become available the organization must fully evaluate all

the costs involved in adding the tool. The translation and re-education

processes required to add a new tool, especially one not fitting the

present environment, could be expensive. The cost of adding the new

tool may offset any advantage gained by incorporating the new tool.

regardless of how valuable it is.

For the Software Support Activity, the right choice has been

made. Due to the experience level of its personnel and the expected

I,4- 79
,le

turnover, the Software Support Activity will do better with a small set

of powerful tools, arnd that is exactly what it has. As a further argu-

ment, VAXset capabilities are impressive when they are compared

with other industry products.

C. HOW SHOULD THE ORGANIZATION RESPOND TO THE LACK
OF TOOLS?

Although the Software Support Activity's tool set is the right

choice with respect to what is currently, commercially available, it

does have limitations.

The limitations are those issues identified in Brooks' theory as

potential problem areas for an organization. No specific tools have

been developed to counter each of the six identified issues. This sec-

tion will present some suggested approaches to help alleviate the

problems this lack may produce for the Software Support Activity.

1. How to Develop Different Levels of Understanding? How to
Develop Understanding in a Top-down Fashion?

The real issue is what documentation should the Software

Support Activity select for its use and how should the selected docu-

mentation be kept up-to-date. According to Brooks' theory, only

documentation that provides different levels of understanding and

develops understanding in a top-down fashion should be selected.

In order to meet these 11oals. documentanion shouid D)e avai.-

able on-line. If this were possible. then the programmer would not

need to look at all the documentation at one time, but look only at

80

documentation that is related to the code section he is currently

working on.

Studies have shown programmers tend to use only program

documentation that is available on-line. It is also the only form of

documentation that programmers typically keep up-to-date. [Ref.

34:pp. 100-1011

The ultimate goal of all system documentation is to have it

generated automatically.

By choice, all system documentation should be available on-

line. Documentation should be included that explains system inputs

and outputs, methods and algorithms used, error recovery procedures,

all parameter ranges. and default conditions. In addition, the System

Requirements. Functional Specifications. all design documents, the

Test Plan. test cases, test data. anticipated test results, and User

Manuals should all be available upon demand. [Ref. 12:p.55]

What if on-line documentation cannot be achieved? The only

possible solution is to consider the use of a document preparation sys-

tem to re-document the delivered documentation to meet the Soft-

ware Support Actjvitvs needs. The documentation preparation system

must include the ability to organize or index the information the

documentation holds, allow the development of cross-reference tools

v.• "trv , 'reaeti. ana enaoie the leneration of a

glossar-"

The software tools used must also provide levels of under-

standing and a top-down organization. As previously discussed, the

81

,o. o,," '. , . , , . , . , . .,. . . ., . ftm , ..

high level of integration demonstrated by the Software Support Activ-

ity tool set helps provide the required level of understanding. The

tools within the Software Support Activity tool set in general do not

provide a good top-down presentation of the software system. In fact,

they may be largely classified as bottom-up because they deal directly

at the code level. An exception to this general rule is the Common

Data Dictionary. It is not surprising that this tool was specifically

requested to be added to the Software Support Activity tool capabili-

ties because it provides a top-level view to the software system.

The Common Data Dictionary contains all data definitions

used within a software system. It knows within which modules, pro-

grams, or tools each of the data names are defined. As a result, it pro-

vides a higher level view of the software system than looking at code

directly. The Common Data Dictionary has other desirable featur-es. It

controls access to all data definitions. As a consequence, it will reduce

redundancy and inconsistencies between data definitions. Its control

will prevent a programmer from creating a second name for a previ-

4 ously created data definition. When a data definition needs to be

changed, it must be changed only in one location in the Common Data

Dictionary. The Common Data Dictionary will ensure the data defini-

tions are changed in each application program. The Common Data

2 Dictionary will aiso neip the programmer iocate Lhe correct definition

to use in an application program. [Ref. 35:p. 3-2: Ref. 36:p. 1-291

The Source Code Analyzer is another tool that provides a

high-level view. It was not procured as part of the original Software

82

Support Activity tool set because it had not been commercially

released. It became available to the public in April 1987. It would be

an excellent tool to add to the Activity's tool set because of its support

of the concepts of providing understanding in levels and in a top-down

fashion. The Source Code Analyzer provides static program analysis.

cross- referencing, and navigation through source code. The Source

Code Analyzer can be used directly from the VAX Language -Sensitive

Editor. In other words. it is fully integrated and compatible with the

rest of the VAXset tools. More detailed information about the Source

Code Analyzer may be found in Appendix D.

2. Understanding the Problem /Specification /Documentation

No new solutions can be presented in this section. The solu-

tions of the previous section- re-documentation, on-line documenta-

tion. and a document preparation system- can be equally applied to

the issues of understanding the original problem the software system

was to solve, the specifications generated. and to the understanding of

documentation in general.

What this section re-emphasizes is that the front-end of the

software life cycle is the least understood of all the phases. Organiza-

tions have the greatest difficulty in representing knowledge of these

processes for later transfer to the other phases of the life cycle or to a

mnaintenance organization. F'or tLhe Software Support Activity. the

problem of representing this knowledge and transferring it for later

use is compounded because of the high turnover rate of its program-

mers (three-year tour lengths). The issue here is how to represent

83

knowledge of these processes and how to make this knowledge per-

* sist through the lifetime of the software to be maintained. Present

software tools cannot fully automate these requirements. What we are

trying to support is nonprogramming activities. Problem definition,

* feasibility studies, analysis, and system design do not produce any code

and often may not even be performed by programmers. What is

- created out of each of these phases is documentation. "Studies indi-

- cate that about two-thirds of the time spent on a large software project

* results in documentation as its direct product. and only one-third

results in code as its direct product." [Ref. 33:p. 32] "Even in the

coding phase. peripheral activities- such as the generation of unit test

plans. memos, and reports- consume a significant percentage of a

* programmer's time." [Ref. 33:p. 32] What is being implied is that

* office automation tools like word processing, forms management,

calendar management, spreadsheet, etc. must be integrated into the

software environment.

3. HeI2 in Mapping From One Domain to the Next

This is an extremely hard issue. If it were possible to map

from the problem definition domain, to specifications, directly to

* code, then Software Engineering would of achieved its ultimate goal.

No one would have to worry about software tools or documentation

because source code would be produced automatically. This capability

is not currently available, nor may it ever be. It certainly will not

happen until the processes encapsulated within each of the domains

and their interrelationships are better understood. [Ref. 371

84

The only automatic mapping available is the mapping from a

program language to its executable source code. This mapping is

accomplished by a compiler or an interpreter.

Headway is being made in other areas. Software tools are

beginning to emerge that help the translation process from one phase

of the life cycle to the next. ProMod is a case in point.

ProMod is marketed as a software development tool. Written

in C, it runs either on an IBM-PC or a VAX 11/780 running under

VMS. What it does is tie the phases of requirements analysis, struc-

tured analysis, and program design together. It does so by carrying

information forward from one step to the next.

ProMod is an impressive tool. Its greatest deficit is that it is

locked into specific methodologies. Most notably, the

Yourdan/Demarco structured analysis methodology, which is a good

methodology but may not match every organization's mindset. Despite

this particular drawback, ProMod offers a number of desirable features:

* Integration of data flow diagrams, data dictionary, mini-specifica-
tions, interface definitions, function call, and data scoping

" Ability to make global changes

" Interactive batch mode graphics and text editor

" Standardized documentation facility

* onsistency and completeness checker

* MIL SPEC 2167 support

' * Archive for maintenance

85

-~ ~ - -

* Generation of pseudo-code templates (pseudo-code shells are
provided but the functionality must be provided by the
programmer.)

ProMod's power comes from its ability to keep track of all the neces-

sary minute details, their interrelationships, and the ability to trace all

key requirements from their current 'status to the moment of their

initiation.

It is not suggested that the Software Support Activity go out

and buy ProMod, although ProMod should receive a more critical

rev..,w. What ProMod represents is the initial cut of software tools

that are attempting to automate the front-end of the life cycle. The

software industry is Just beginning to recognize the critical need in

this area. Vendors will be doing their utmost to fill the critical void

with their own solution to the problem.

4. Dealing with Programmer Variability

This will be a constant issue for the Software Support Activity.

The Software Support Activity will always have a mixture of novices

and experts. The need to develop levels of understanding within

documentation and software tools has already been adequately

addressed. Software Support Activity training and education must

meet the needs of both novices and experts.

5. How to Develop and Enforce the Organization's One Common
View/Model of the System Being Maintained?

Three sub-issues are involved in this category. They are: 'a)

how to help the process of learning, (b) how to help improve technical

communication and negotiation within the organization, and (c) how

86

to improve the likelihood of developing super-conceptualizers. Each

sub-issue is covered as a separate sub-section of this section.

a How to Help the Process of Learning

In most organizations, early training of employees is

limited and isolated to the specific activities employees are hired to

do. Employees. typically, are not given the big picture of how their job

fits in the large scheme of things. Software Support Activity training

must be different. Software Support Activity personnel must be taught

how to transfer and translate user concerns into programmer

concerns. The early training of all personnel must emphasize that the

theme for the Software Support Activity is service. One way to do this

is to establish the following exercise as part of every Software Support

Activity member's early training. The exercise would graphically

demonstrate the mechanism of how a user requirement is accepted by

the Software Support Activity and how It is propagated through the

organization and back out to the user as a code, manual, or operational

change. Everyone, regardless of department. would trace the steps

required to take a user requirement through the organization to the

.6 action office and back out again. The training should also emphasize

how Software Support Activity performance is measured- a quantifica-

tion of. (1) How long does it take for the user problem to be under-

stood? (2) F-ow long does it take for the requirement to filter through

the organization to the action office? (3) How long does the action

office take? (4) How long does the quality assurance group take to

certify a good fix has been made? (5) How long does the fix take to

1% 87

reach the field? (6) How does the user rate the flx once he receives

it? Each person's role in this scheme must also be identified and

stressed.

What will develop out of this particular exercise is an

understanding for everyone of what their Job is within the organiza-

tion, what the role of the Software Support Activity is. and the devel-

opment of a corporate culture. If done right, the exercise would have

a profound effect on how Software Support Activity personnel think

about themselves and how they describe the role of the Software

Support Activity to people outside the organization.

U How to Help Improve Technical Communication and
Negotiation Within an Organization

The real issue is how to help develop horizontal commu-

nication in the organization. A number of things can be done. One is

to develop within the organization a theory of the field. In order to

help horizontal communication, everyone should have the same, or at

least comparable models of the software system. The Software

Support Activity should help develop a local vocabulary of technical

concepts and their meanings that everyone should use in the same

uniform way. A technical library must be created to house the books

and papers that support the local vocabulary and view.

Networiang of maintenance workstations is a real pius m

aiding informal, horizontal communication. Software maintainers

need to share and show their work. If they are having problems with a

particular segment of code having a co-worker take a look and

88

J* **~ *64*11 1 2 * -. ',.

providing that look within the computer environment, i.e.. via elec-

tronic mail or file transfer, is a keen advantage. In addition, having

maintainers on the same! network will ease the problem of them

working together on different parts and on different versions of a large

project. [Ref. 38:p. 2361

Walk-throughs are an outstanding mechanism to help the

flow of horizontal communication. The Software Support Activity

should consider conducting walk-throughs even on code that is not

presently being modified. Just to help the programmers keep fluent in

* their responsible program area. These "educational walk-throughs"

would serve the dual purpose of allowing cross-training and extending

*everyone's knowledge of the software system as a whole.

c. How to Improve the Likelihood of Developing Super-
conceptualizers

This is a difficult issue and one that is better dealt with
from a purely management perspective. It involves the whole notion

of power and politics within the Software Support Activity. One of the

ways managers achieve power is by controlling information and

knowledge like a resource. The Software Support Activity cannot

afford to have information tightly controlled. It must be allowed to

flow freely. Providing suggested approaches to this issue is outside the

scope of this thesis, but it is a critical issue :br the Software Support

Activity and will require considerable planning and thought.

89

6. How to Cope With the Different Degrees of Understanding
Between Users. Management. and the Maintenance
Organization

Communication with users can be improved through visits.

.dlrect connectivity (which should include a bulletin board capability), a

query formatting assist tool, and the development of troubleshooting

and testing procedure guides for the operational sites.

The value of Software Support Activity visits to operational

sites and other players is obvious. The connectivity issue is equally so.

It is a key advantage that the Software Support Activity's pro-

* grammer terminals are networked to allow electronic mall and file

transfer. Toshltsugu Nomura [Ref. 39:p. 2691 documented the need to

not only connect workstation environments within a local area net-

* work but also via a wide area network to improve productivity and/or

quality Improvement. The facilities afforded within the Software

Support Activity organization would be equally beneficial if they were

distributed to operational sites. Although future Platform connectivity

between the Software Support Activity and the operational sites is

planned, it is important to ensure that this connectivity includes the

capability to computer conference, pass electronic mail, perform file

transfer, enable resource sharing, display an electronic bulletin board,

and to allow joint document authoring and review.

DEC offers a product called VAXnotes that provides these

capabilities. In addition, VAXnotes provides a mechanism to share bug

reporting between physically distant locations. An operational site

would first check the electronic bulletin board to see if a given

90

problem had been encountered before and if so access the docu-

mented solution. A cross reference tool is built into the VAXnotes that

allows the user to browse related topics without having to review the

entire bulletin board. If no solution was found, then the operational

site could identify the problem and seek advice from other operational

sites and the Software Support Activity.

In everyday use, the VAXnotes electronic bulletin board

includes a feature that allows a user to view Just the notes and updates

that the user has not previously seen. The bulletin board has a built-in

capability to keep track of what the user has seen in the past.

The electronic bulletin board allows the distribution of

expertise. Software Support Activity philosophy and notes to the

operational sites can be shared uniformly and quickly, and be readily

accessed and reviewed. The electronic bulletin board would also be an

effective means to relay and update troubleshooting techniques to the

on-site software personnel at each of the operational sites.
Unique features of VAXnotes include a monitoring capability

and the ability to restrict some conferences or messages to specific

recipients. The monitoring capability is desirable because it allows the

named monitor, more than likely the Software Support Activity, to

remove certain notes from dissemination that may be offensive or

otherwise politically unsound to distribute across the network.

Restricted conferencing and message relaying is also desirable. Not all

the operational sites will be configured the same or have the same

needs. Not all traffic should be shared. The ability to share some

91

traffic common to all users and restrict distribution of other messages

are both needed capabilities.

It is not necessary to buy VAXnotes. What is important is to

plan and implement the capabilities of VAXnotes described above. if

Platform does not provide file transfer, electronic mail, resource

sharing, and a bulletin board capability, then a product like VAXnotes

should be considered. A potential DOD alternative is to become a

MILNET subscriber of the Defense Data Network (DDN). DDN pro-

vides almost worldwide service and a fully capable host always provides

electronic mail, file transfer, and resource sharing services. A com-

partmented traffic capability does exist on DDN if required. DDN may

be a viable alternative to consider for the Software Support Activity to

meet near term needs.

A continuous problem for the Software Support Activity will

be errors and bugs produced from users making incorrect input

entries. One way to lessen these errors is for the Software Support

Activity to develop a query formatting assist tool. It would be very

similar to the templates used in the Language Sensitive Editor. The

idea is to provide the user an already pre-formatted shell and help

facilities so the user cannot make a mistake. In terms of Brooks'

theory, the Software Support Activity would be forcing the user to

share the same input view of the software system as the Software

Support Activity.

Another way to help the operational sites and the Software

Support Activity to share the same model of the software system is for

92

'p

the Software Support Activity to develop suggested testing procedures

adscenarios frthe operational sites to use. Vocabulary and how

software problems are described will always be a tough issue for both

the Software Support Activity and the operational sites. To help iden-

tify what the user is trying to describe, the testing procedures can

p... help isolate in what module the error Is occurring and the exact

behavior the error is exhibiting. The testing procedures would be a

valuable communication medium through which Software Support

Activity personnel and the operational sites could communicate.

The Software Support Activity must not limit its communica-

tion concerns only to inter-organization communication and commu-

nication with users, but also must develop aids to help communicate

with management. Management is concerned about the bottom line.

They are concerned with how long things take and how much things

cost.

Boehm, et al. [Ref. 331 suggested that a master project

database be defined and implemented to help track these concerns.

The master project database would contain "all information relevant to

project activities including budget, personnel, scheduling and other

managerial data in addition to such technical information as software

requirements, design, test procedures, and code...." (Ref 33:p. 341
In addition. PERT Program Evaluation and Reviewv Tech-

* nique) and CPM (Critical Path Method) scheduling and planning tools

along with budget analysis tools would be desirable.

93

A need exists to track problem reporting and change

requests from initial recognition to final fix implementation. In addi-

tion. there must be some means developed to ensure maintainability

aspects and general quality control procedures have been imple-

* mented (i.e.. documentation updated. code revalidated. new release

procedures followed. etc.).

Change is an inherent quality of software maintenance. The

Software Support Activity needs a simulation model in order to pro-

vide management information on how expensive a particular change

"S. may be. Software maintainers make a wide variety of changes. both big

and small. It is not always possible to fully determine all the effects a

particular change will have on a large program system. The use of a

simulation model potentially could allow the results of any change to

be visualized. Conceivably, an even more powerful aspect of a simula-

tion model is that it will allow alternatives to be tried and compared.

4,.4

VUI. CONCLUSIONS

The Software Support Activity tool set has been evaluated and

found to be state-of-the-art and of industrial quality. As good as this

tool set is as an environment. it does not deal with the problems

Brooks' theory predicts are important to software maintenance

organizations. In particular. software environments need to help a

programmer better understand programs and provide support to the

entire software life cycle.

Although VAXset is limited in this regard, software tool environ-

ments are beginning to appear on the horizon that may address these

problems more adequately. Many in the software industry believe that

in the long run what must be developed is a formal language or nota-

S tion that describes and defines the processes that are taking place.

The theme of the 9th Annual International Conference on Software

Engineering- Formalizing and Automating the Software

Process- further emphasizes this point.

Although the ideas developed in this thesis have been applied to a

specific organization, they will apply equally well to any software

maintenance organization. In fact, the single most important act,,(,,-

- . the Navy or any other organization may take is to ensure techni T.

necessary to support software maintenance ire .nc~:t, : i'

* -- ~ every project's acceptance criteria [Ref. 12:p. 1381. The to>.-,

in maintenance must be developed during the softtwau'

phase. There should be no notion of creating i s!,%i

environment after the system has been J>

95

-~-A184 723 SOFTWARE TOOL SELECTION FOR A US NAVY SOFTWARE 2/2
MAINTENANCE ORGANIZATION(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA J SEXTON JUN 87

UNCLASSIFIED F/G £2/5 N

EhmhohmohlsiE
EMons EEEon

4.5

111115 1 .0 1.

MIROOP REOUTO TECHR
MATIONA B UREUO SADRD -

- I-.

maintenance tools must be developed and used in the production

environment. There should be no need to make a transition from

development to maintenance. Design and maintenance must be

coupled more closely. The Navy and other organizations need to

incorporate into their philosophy the concept that they should not Just

ask for an operational system but should ask for an operational system

with a software maintenance environment built around it.

96

APPENDIX A

LIST OF ACRONYMS

CCB Configuration Control Board

CDD VAX Common Data Dictionary

CI Configuration Identification Items

CM Configuaration Management

CMS VAX DEC/Code Management System

COMNAVSECGRU Commander, Naval Security Group

CPM Critical Path Method

CRLCMP Computer Resources Life Cycle Management
Plan

DDN Defense Data Network

DEC Digital Equipment Corporation

DED Data Element Dictionary

DOD Department of Defense

ERA Engineering Research Associates, McLean, VA

FMS VAX Forms Management System

MSTDF Mobile System Technical Data Facility

MMS VAX DEC/Module Management System

NOSC Naval Ocean Systems Command, San Diego, CA

NTTC Naval Technical Training Center. Pensacola. FL

PERT Program Evaluation and Review Technique

SCORE SIGINT Classification of Recognition of
Classified Emitters

SCSS Shore Cryptologic Support System

97

SIGINT Signals Intelligence

SPAWAR Space and Naval Warfare Systems Command

SQL Sequel

SSA Software Support Activity

VAX Virtual Address Extension

VAXset VAX Software Engineering Tools

VMS Virtual Memory System

98

APPENDIX B

SOFTWARE MAINTENANCE QUESTIONNAIRE

NOTE: "We" means the Software Support Activity.

A. DEVELOPMENT

1. Who is developing the system and under what standards?

* What were their programming standards? Will we be using
the same ones?

e Requirement and specification standards?

e Design standards?

* Source code standards?

* Documentation standards?

2. Were the developers given specific standards to achieve in

order to make the system more maintainable? If not, has the devel-

oper tried to improve maintainability by:

" Setting explicit software quality objectives and priorities

" Using quality-enhancing techniques and tools

• Establishing QA activities

" Choosing a maintainable programming language

" Improving program documentation

" Contracting the program

3. Have the developers been late on any phase? Are they on

time now?

4. Is anyone on the development team going to be Joining the

maintenance staff?

99

5. Are we inheriting any system development which we must

complete? How critical is it?

6. Has replacement/retirement and a new release plan been

considered?

7. How did the developers ensure their system was easy to

understand? That it is:

" Concise

" Consistent

" Complete

8. How were error recovery and restart procedures built-in?

(considered minimum required or rich utilities)

9. What was the data flow design method?

10. What was the data structure design method?

11. What other design methods were used?

12. How was the system specified?

" How did NSG sign off on what was developed?

" Specs frozen? When?

B. SYSTEM PARAMETERS

1. System size? How many distinct systems? Number of pro-

grams? Number of modules in each? Lines of code? Expected size of

data base?

2. Has this system been built in a similar form by the developer?

3. How many output reports does it generate?

4. Reports feed in directly into COMM center or ?

100

5. What programming language or languages is it programmed

in? What major functions are in each language?

" What are they?

" How well integrated are they?
* Did the developers create an integrated environment? If

so, is that part of the deliverables?

6. What kind of structure does it have- considered very

structured?

7. How much do we have to worry about in terms of efficiency?

8. Which operating system are we using?

9. How real-time critical is the system? How responsive to the

analyst must we be?

10. What are the major system components? Are we maintaining

all of them? Is there a

" Decision support system?

" Report processing system?

" Information retrieval system?

11. Future evolution expected? In what areas?

12. In what ways is this system distributed?

" How tightly coupled?

" How interdependent?

13. What build-in security restrictions are there?

14. Multithread operations supported?

101

C. ORGANIZATION

1. How will the personnel be split up?

* numbers/department roles and functions/expected ability
of each? (splitting up according to major functions in the
system to be maintained or in major work areas)

e how will programming teams be organized?

* how is the user group notion going to be handled?

* what personnel training will be provided?

2. What is the interplay between workstations vs the VAX?

* what work will be done on each?

* how many workstations and VAX systems will there be?
How will they be assigned?

3. Where will the civilians be placed? What backgrounds?

4. How often will we be doing in-house re-training?

D. TESTING

1. How has the system done through the various inspections?

Who attended?

2. Are change exercises part of the test criteria?

3. Audit checks done when and how?

4. Which programs/modules/systems do the developers con-

sider most error-prone?

5. Programs were completed in what order? Which ones were

the most troublesome?

6. Will we be doing any of our own analysis to determine which

* modules may be the most error prone?

7. Maintenance reviews and testing done how?

102

8. What was the validation and verification criteria?

9. How is our retesting and revalidation program going to be

set-up to validate program changes during maintenance?

10. Are we receiving a complete summary of test results? Does

this include information on what specific errors were found and what

was changed?

11. What tests were done?

12. Will there be an extended acceptance test where the devel-

opers maintain the system for a time while we get to use the system?

13. Did we have maintenance representation at design review?

e Code review?

* Test phase?

14. Everyone tends to make the same kind of errors. Do we

know who worked on what module and what their "error style" is?

E. MAINTENANCE

1. What are we really maintaining?

2. How is the term maintenance defined for the organization?

In other words, what jobs will the station have?

3. What will be the maintenance philosophy?

4. What are the maintenance objectives?

5. Will a System Maintenance Journal be kept after delivery?

6. Will an Error History be kept?

7. Will a Program Test History be kept and updated (update

each time a new version of the program is produced)?

103

Li/

8. What will be the formal change procedure? What is the

change control philosophy?

* What will be the process for justifying program change?

" Who will sit on the change review board? How often will it
meet?

" Any thoughts to a charge-back system?

" How is quality control ensured during program changes?

" How will maintenance be scheduled?

9. Intend to keep a change-request log?

10. How often do we intend to send updates to our users? Do we

have a rough outline what those enhancements will be? If so, what are

they?

11. Will we be concerned with configuration management to

control hardware, operating system. and utility software changes?

" How do we ensure these items don't get out in the field
without us knowing?

" Who is going to keep us informed of changes in this area
and what kind of lead time will we get?

12. Are we planning a separate prototype language to make new

development/updates of the system or will it be the same? If not,

what language has been chosen?

F. DOCUMENTATION

1. What documentation did we ask for? What form is it in?

Specifically what deliverables in each of the four classes of

documentation:

" user documentation

" operations documentation

104

" program documentation
" data documentation (i.e., data model and data dictionary)

2. Do we have on-line user documentation?
o on-line help facilities- ability to inquire about each user

function
o computer-aided Instruction

3. Besides internal documentation, what external documen-

tation will be delivered?
" When was the last time it was updated?
" Does it represent the delivered system or earlier versions?
" What check was used to ensure this?

" Will we be provided a history of changes?

4. Is a system development journal being turned over?
o What were the original design intentions?
o. What parts of the system did the developers consider the

most difficult?
" What was the development philosophy?
" Will we be provided reasons why the developer selected

particular designs?
" Will we be given information concerning what designs were

contemplated and reasons why they were rejected?
" What were the project goals and priorities?
" What experimental techniques and tools were used?
" What day-to-day problems did they encounter?
" What do the developers consider their project successes

and failures?
" What went right? What went wrong?

5. Is an Error History being turned over?

6. A Program Test History?

105

7. To what degree are we going to have to re-document the sys-

tem we've been delivered? Any thought to re-documenting the system

as a learning exercise for the station prior to taking over control?

8. What documentation standards did the development

organization use?

9. How were the following things documented?

* source code
e overview
* program organization

e control structure
* program comments

e instruction level comments

e meaningful names

• code style

G. TOOLS

1. What environment are we using?

2. Are tools used in development part of the deliverables?

3. How would I find out what tools the developers are using?

4. What hardware and software did the developers use in devel-

oping the system?

5. Test data and test drivers- are we getting them? Do we know

what the developers used?

6. What data administration techniques will be used? (i.e.. con-

trol design and definitions of all data?)

7. What logging and audit tools are part of system? (i.e, auto-

matic audit trails, accuracy controls, logs of usage)

106

8. Will there be a procedure library?

9. Was the system built with defensive programming aids built

in, then removed by optimization techniques? If it was, are we getting

the tools to input defensive code and to optimize the code for opera-

tional usage? If not, will we be building these tools?

10. Would a potential goal of the organization be to develop an

integrated environment?

H. USER

1. How often do we intend to make visits out to the sites?

2. Philosophy on user enhancements:

" Separate department to handle enhancements?

• Batch?

" Cost-back scheme?

" Who decides what changes?

" Who will be on the Change Control Board?

3. What user training will we be doing?

4. What hardware will the user have?

" Others possible?
" Are they connected to other sites? How much information

will they be passing? How consistent must the data bases
be between sites?

5. Will end users be maintaining user documentation and their

own user training?

6. How are we going to improve the user's understanding of how

to more effectively use the software system?

7. Will the user be making software changes?

107

A l 1

8. To what degree are the users going to be the ones responsi-

ble for making updates?

I. BUDGET

1. What does the budget look like in terms of:

" further training

" travel to user

" money for software tools

• software and hardware enhancements

J. REPORTING

1. What information will we provide users?

2. What will users be reporting to us and how often?

3. Who do we report to and how often?

4. How many output reports? How easy will their format be to

change?

5. Will users have a good report generator tool available to adapt

their reports or will we disallow this?

• Are there mapping needs?

" Graphics needs?

K. DATABASE ISSUES

1. Are we maintaining data management facilities?
2. Who will be the data administrator? How will he monitor

data models used within each segment?

3. How has the need for data independence been assured?

4. I understand we are using ORACLE. What relationship will be

maintained between the data base, ORACLE, and VAX/VMS?

108

- - - - . - - , - . - . . (" -,
0"

5. What constraints have been imposed on the system to prevent

disintegration of the database from class 3 to class 2?

6. Are we using application development without programmers?

(What I mean is, will the sites be allowed to develop some SQL queries

on their own or must all the query manipulation programs be blessed

by us first?)

7. Is the system a combination of a relational data base with an

information retrieval system? (Joined or separate)

8. What structure or structures are used to access the data? (i.e.,

search and join, secondary indices, ring structures, or ?)

9. What constraints are built-in to limit/avoid redundancy?

10. How stable is the data?

11. Is this a single data base or multiple data base system?

12. Data stability-
" Have we identified the data model?
" Able to add files?
9 Able to create new access paths?
" Do we have automatic generation of data descriptions from

a dictionary? Any capability to prevent programmers from
inventing their own data descriptions?

" Ability to change associations among records?
" Fleible query facilities and report generators?
" Are we allowing application generators at local sites (ability

to generate applications from the data base without pro-
grammers)?

*Get results via command (like query) vice writing a
program?

*Data at each site will be different or not? Was the consid-
eration built-in?

109

13. What kind of usage are we expecting? A couple of terminals

off the system? What?

14. To what degree did we do data modeling?
" Developers only?

" Did we send Navy personnel to help?
" Has a canonical model (computerized tool that helps in

building data models) of data been created?
" Do we have a data model standard to be used by all sites?

• Is there a standard naming convention for selecting data-
item names?

15. Are data dictionary and data modeling tools included in the

deliverables?

• Is the data dictionary built into the DBMS?

16. Have we identified future data needs?
• Can we change key fields or are keys used at all?

17. What kind of data base is it?

• subject data base

* isolated application data bases

* information system data bases

18. How complex is the query language?

19. Why did we elect to go with a tailored system as opposed to

using a commercial system?

20. How adaptable is the system to "What if' questions? How

flexible a system is it to new associations? To what degree are we

going to allow the user to use their imagination and tailor the system

to their needs?

21. How independent is the way data is stored to the way it is

used?

110

MMOZ II0

22. Interoperability with NSA data bases? Other service data

bases? Wizard?

L. FUTURE

1. How will we be set-iip so as to determine long-term future

growth and potential system replacement?

2. How will we do strategic planning?

,11

APPENDIX C

SOFTWARE SUPPORT ACTIVITY TOOL SET

A. VMS SOFTWARE DEVELOPMENT ENVIRONMENT

The VMS Software Development Environment has been bought for

the Software Support Activity. It is an integrated package that was

developed specifically to increase programmer productivity, increase

product quality, help manage complexity, and increase the effective-

ness with which programmers implement, test, and maintain

programs.

The VMS Software Development Environment can be broken into

four basic categories: the VMS operating system, VAX languages,

VAXset, and related VAX software.

The VMS operating system is a general-purpose operating system

[Ref. 4 0:p. 1-51. An operating system is responsible for the coordina-

tion and management of a computer system's resources. The VMS

operating system Is the foundation upon which the rest of the software

development environment rests. It serves as the focus point and the

driver of all VMS software components. Since all resources are com-

patible with each other and have been designed to work together, the

specific services and utilities of the VMS operating system may be

invoked directly by VAXset tools. [Ref. 36:p. 1-11

The sixteen VAX languages include Ada, APL, BASIC, BLISS, C,

COBOL, DIBOL, FORTRAN, Pascal, PL/I, and RPG II. The VAX version

of FORTRAN and Pascal will be used by the Software Support Activity.

112

.- M ,

An important capability to note concerning the sixteen languages is

that each is capable of calling programs written in another VAX

language. [Ref. 40:p. XVII

VAXset is comprised of five software tools: VAX Language-Sensi-

tive Editor, VAX Performance and Coverage Analyzer, VAX DEC/Test

Manager, VAX DEC/CMS, and VAX DEC/MMS. Each will be covered in

more detail later in this appendix.

Related VAX software includes capabilities for data communica-

tion, information management, and cross development. Each of these

capabilities is optional. Of them, the Software Support Activity will

only make use of the data communication (DECnet) facility.

The VAX/VMS Software Development Environment was designed

to be an integrated environment. All components of the environment

already described were designed to a common specification and were

based on a single operating system (VMS) and on the same

architecture (AX).

The common specification is termed the VAX Common Language

Environment. It standardizes calling conventions, condition and error

handling, and programming practice.

It is the VAX Common Language Environment that allows pro-

grams written in one VAX language to call other programs written in a

different VAX language. The VAX Common Language Environment also

allows the VAXset tools to communicate with each other by means of a

compatible set of data formats. In addition, the VAXset tools share a

common user interface. The tools are consistent in terms of user

113

C, ti ;5t

input and response to that input. They share the same command lan-

guage, prompts, and error messages. An Important characteristic of

VAXset tools is many of the tools may be customized and extended to

meet user requirements. [Ref. 40:pp. 1-1 to 1-21

B. VAXSET•

1. Langruage-Sensitive Editor

The Language-Sensitive Editor allows you to write programs

in the VAX language of your choice. It is a multi-window screen-editor

that is non-modal. It allows the completion of many programming

tasks within a single editing session. Programmers can write, edit,

compile, review diagnostics, and correct compilation errors without

ever leaving the editor. [Ref. 36:p. 1-241

The editor has a built-in understanding of the syntax of the

programming language being used. It provides pre-formatted tem-

plates to help program development and offers on-line help facilities.

[Ref. 40:p. 1-171

The templates are formatted language constructs that contain

all the key syntactic elements. User input areas are indicated by

required or optional placeholders. The user may input program text

directly into a placeholder or choose a given option from a provided

menu.

Users can tailor the templates to match the programming

standards of the organization. Templates also can be created for

documentation standards, since the Language-Sensitive Editor is a

text-oriented editor.

114

AI . , lp I

The help facilities provide extensive language-specific infor-

mation and specific help in using the language-specific templates.

The editor is directly compatible with many of the VAX lan-

guages (can invoke the VAX compilers directly). the VAX Debugger,

and the VAX Performance and Coverage Analyzer. Since it is compati-

ble, the Language-Sensitive Editor may be directly invoked from the

Debugger or the Performance and Coverage Analyzer. The VAX Source

Code Analyzer and the VAX DEC/CMS. on the other hand, can be

directly invoked from the editor. [Ref. 40:pp. 1-171

2. VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer can be used to

fine-tune and optimize source code for peak efficiency. It is suitable

for finding performance hot spots and ensuring thorough test

coverage.

The VAX Performance and Coverage Analyzer consists of two

parts-the collector and the analyzer. The collector gathers all per-

formance or test coverage data from an executing program. The

analyzer uses the information collected by the collector to produce

histograms and tables showing the parts of a program that consume

the most resources. The type of information that can be displayed is

an indication of what part of a program takes the most time, page fault

data. what VMS services are called and how often. 1/O usage data. and

what paths are exercised as part of your test coverage. The informa-

tion displayed can be produced at a very detailed level or at a very

coarse level. [Ref. 36:pp. 1-241

115

3. VAX DEC/Test Manager

The VAX DEC/Test Manager provides automatic and consis-

tent software testing. It helps the user manage the testing process by

organizing collections of user-designed tests. The DEC/Test Manager

allows a user to select tests, run them, and verify and review results.

Tests can be created either interactively, or via DCL (standard

VAX/VMS command language interface) command scripts. [Ref.

40:pp. 1-16 to 1-171

The DEC/Test Manager is an automated regression testing

system that can be used throughout the software life cycle. It auto-

matically executes user-defined tests and compares test output against

pre-established benchmarks (VAX DEC/CMS can be used for the stor-

age of test templates and results). The benchmarks are either

supplied directly by the user or are benchmarks stored from a previ-

ous test run. [Ref. 40:pp. 1-16 to 1-171

The DEC/Test Manager can continue to be used even after

existing features have been updated or new features added. The Test

Manager includes a feature that can predict expected results. If the

expected and actual results differ greatly. then the software has

regressed and needs to be fine tuned. [Ref. 40:pp. 1-16 to 1-171

The VAX Performance and Coverage Analyzer and the VAX

DEC/Test Manager can be used together to run a complete group of

tests on an entire software system. The use of the VAX Performance

and Coverage Analyzer in this case is automated under the VAX

116

DEC/Test Manager. This capability can be used to ensure any new

code written has been adequately tested. [Ref. 40:pp. 1-16 to 1-171

4. VAX DEC/Code Management Sstem (CMS)

The VAX DEC/CMS is a program librarian. It is used to track

all changes made to a program's source code flle including ancillary

information of who made the change, why they made the change, and

when. [Ref. 36:p. 1-221

The VAX DEC/CMS stores both current and historical ver-

sions. Therefore, it can be used to both reconstruct prior versions and

to identify and freeze software for release. [Ref. 36:p. 1-22]

Its most powerful feature is the ability to either prohibit or

permit concurrent reservations. In other words, CMS can either be

configured not to allow two programmers to work on the same seg-

ment of source code or it can be configured to allow two or more

programmers to make changes. If concurrent reservations are pro-

hibited, then it allows users to reserve fles for their exclusive access.

On the other hand, if concurrent reservations are permitted, CMS has

the capability to keep track of all edits performed by two or more

project members working on the same files at the same time. When

this occurs, CMS notifies each programmer that someone else is

working on the same code segment. If the changes do not conflict,

then CMS can without intervention merge all changes. If. when the

merge is completed, code conflicts have occurred, then CMS notifies

the users of the conflict and identifies the problem in a difference file.

The programmers may or may not take action depending on the use of

117

their code segment. (Note: CMS can allow multiple versions of a

source file provided it is linked to a specific version of the target soft-

ware system.) Thus, users do not have to worry about undoing some-

one else's work or making changes that may adversely affect someone

else's files.

As mentioned previously, CMS can be used directly from the

Language Sensitive Editor.

5. VAX DEC/Module Management System MMS)

The VAX DEC/MMS is used to manage system builds. It

makes easy the maintenance of current versions of routines, modules,

or files that have undergone many changes. MMS ensures the current

version includes all the latest changes and interdependencies. It also

rebuilds systems efficiently since it only updates those components
that have changed since the last build. If MMS does not have a given

routine, module, or file, it is smart enough to obtain access to the files

needed directly from VAX DEC/CMS libraries or from VAX/VMS

libraries. [Ref. 40:p. 1-161

1

m 118

APPENDIX D

SOURCE CODE ANALYZER

The Source Code Analyzer provides support for seven languages

including FORTRAN and Pascal. It provides three basic capabilities:

source code cross-referencing, code navigation or browsing, and static

analysis.

The Source Code Analyzer can be invoked directly from the

Language-Sensitive Editor. Both tools are tightly integrated through

an analysis file with the VAX compilers. The analysis file is used to

create a Source Code Analysis Library that is essentially a cross-refer-

ence database. At the end of every compilation, any new or changed

cross-references are merged with all previous cross-references

created during earlier compiles. The Source Code Analysis library

uses hashing and indexing to allow fast access to the cross- referenced

data.

Typically, the Source Code Analyzer will be used from the context

of the Language-Sensitive Editor. The user defines a symbol to be

cross-referenced within the source code. The upper portion of the

screen contains a table of information about the symbol selected. The

table is divided into four parts: Symbol Name, Class (data type. i.e.,

variable, constant), Module/Line (location of symbol occurrence), and

Type of Occurrence (read reference, write reference, etc.). Specifica-

tion of the symbol to be cross-referenced may be either exact or vary

in the degree of specification through the use of a wildcard () symbol.

119

All symbols in the cross-reference database may also be selected, but it

naturally is extremely slow to list all symbols. An editing window (the

Language-Sensitive Editor) and a command line make up the bottom

portion of the screen. The table information and the source code, in

the editing window, are visible at the same time.

Navigation through the source code is possible by selecting the

location information or the type of occurrence of a given symbol.

Depending on what was chosen, the source code within the editing

window is updated to reflect the location or occurrence desired.

Declaration information related to the symbol can be requested and

pops up within its own window Just above the source code. The

declaration of a symbol and its appearance in source code can thus be

readily compared.

Navigation is not only possible from the cross-reference table to

source code but also from source code to cross-reference information.

If a symbol is selected within the source code that is not currently

reflected in the cross-reference information, then the table will be

updated. Moving from source code to cross-reference information and

back again is very easy and natural for the user.

The breakout of type of occurrence information into one of the

following: read reference, write reference, address reference, variable

declaration, constant declaration, and formal parameter declaration, is

extremely powerful for a maintenance programmer who does not

know much about the code he is currently viewing and in which he

needs to browse around. Depending on the program error, write

120

('. .

references (when a variable is changed) may prove the most likely

source of the error. What is learned during the review of the write

reference occurrences would dictate where the next most likely

occurrence of the error may be.

The static analysis portion of the Source Code Analyzer consists of

two portions: the ability to view the call tree and a means to check

calling argument consistency.

The view of the call tree may be either specified or limited to a

particular depth. The Source Code Analyzer will look through the

cross-reference database and find all calls that came from the refer-

enced routine, module, function, or procedure. This part of the static

analysis tool will also indicate whether the calls referenced are recur-

sive calls or not.

The check calls command determines whether any calls are not

consistent. For example, the check calls command checks that all the

procedure calls' type declarations and number of parameters match.

I

121

11rIF

LIST OF REFERENCES

1. Charette, R. N., Software Engineering Environments: Concepts
and Technology, Intertext Publications, Inc., 1986.

2. Reifer, D. J. and Trattner, S., "A Glossary of Software Tools and
Techniques," Computer, v. 10, pp. 52-60, July 1977.

. 3. Howden, W. E., "Contemporary Software Development Environ-
ments," Communications of the ACM, v. 25, pp. 104-135, May
1982.

4. Rome Air Development Center Technical Report RADC-TR-85-
112, A Taxonomy of Tool Features for a Life Cycle Software Engi-
neering Environment, by E. S. Kean and F. S. LaMonica, June
1985.

5. National Bureau of Standards Publication NBS-IR-80-2159, NBS
Software Tools Database, by R. Houghton and K. Oakley, 1980.

6. FJeldstand, R. K. and Hamlen, W. T., "Application Program Main-
tenance Study: Report to Our Respondents," as taken from
Tutorial on Software Maintenance, by G. Parikh and N. Zvegintzov,
IEEE Computer Society, pp. 13-27, 1983.

7. EIA Configuration Management Bulletin No. 4A, Configuration
Management for Digital Computer Programs, by G-33 Configura-
tion Control Committee, p. 2.22, April 1979.

8. Naval Electronic Systems Command UNCLASSIFIED Letter 9470:
PDE 107 Serial 9C6/2889 to Distribution, Subject: Promulgation
of the Shore Cryptologic Support System [SCSS) ComDuter
Resources Life Cycle Management Plan (CRLCMP) Volume I, 23
August 1984.

9. Martin, J. and McClure, C., Software Maintenance: The Problem
and Its Solutions, Prentice-Hall. Inc.. 1983.

10. Buxton, J. N. and Druffel, L. E., "Rationale for Stoneman," as taken
from Interactive Programming Environments, by D. R. Barstow,
H. E. Shrobe, and E. Sandewall, McGraw-Hill Book Co., pp. 535-
545, 1984.

122

11. Mitchell. C. Z.. -Engineering VAX Ada for a Multi-Language Pro-
gramming Environment," Proceedings of the ACM SIGSOFT/
SIGPLAN Software Engineering Svmposlumn on Practical Software
Development Envidronments, Association for Computing Machin-
ery. pp. 1-10, December 1986.

12. McClure, C. L., Managing Software D2evelopment and Maintenance,
Van Nostrand Reinhold Co., 1981.

13. Swanson, E., "The Dimensions of Maintenance," PrQgeeings oQ
the 2nd -International Conference on Software Engineering, IEEE
Computer Society Press. pp. 492-497, October 1976.

14. Parikh, G. and Zvegintzov, N., Tutorial on Software Maintenance.
IEEE Computer Society, 1982.

15. Fairley, FR E., Software Engineering Concepts, McGraw-Hill Co..
1985.

16. Heninger, K. L., "Specifi~'ng Software Requirements for Complex
Systems: New Techniques and Their Application," IEE
Transactions on Software Engineerinag, v. SE-6, pp. 2-13, January
1980.

17. Schneiderman, B., Software Psychology, Winthrop Publishers,
1980.

18. Lientz, B. P. and Swanson, E. B., Software Maintenance Manage-
ment: A Study of-the Maintenjance of Computer Application Soft-
ware In 487 Data Processing Organizations,. Addison-Wesley
Publishing Co., 1980.

19. Shneiderman, B. and Mayer R., *Syntactic/Semantic Interactions
in Programmer Behavior: A Model and Experimental Results,"
International Journal of Computer and Information Sciences . v.8.
pp. 219-238, March 1979.

20. MacLennan. B. J.. Principles of Programming Languages:- Design.
Evaluation. and Implementation, Holt, Rinehart, and Winston.
1983.

21. MacLennan, B. J., Functional Programming Methodology, to be
published by Addison-Wesley. 1987.

22. Miller, G. A., Thbe Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information.'" Tha
Psychological Review, v. 63. pp. 8 1-97. March 1956.

123

23. Brooks. R. "Towards a Theory of the Comprehension of Computer
Programs." International Journal Man-Machine Studies, v. 18, pp.
543-554, 1983.

24. Brooks. R.. "Using A Behavioral Theory of Program Comprehen-
sion in Software Engineering,' Proceedings of the 3rd Interna-
tional Conference on Software Engineering, IEEE Computer
Society Press, pp. 196-201, 1978.

25. Brooks, R., "A Theoretical Analysis of the Role of Documentation
in the Comprehension of Computer Programs," Proceedings of
Human Factors in Computer Systems, pp. 125-129, 1982.

26. Wiedenbeck, S., "Processes In Computer Program Comprehen-
sion," as taken from Empirical Studies of Programmers, by E.
Soloway and S. Iyengar, Ablex Publishing Co., pp. 48-53, 1986.

27. Curtis, B., Tutorial: Human Factors in Software Development,
IEEE Computer Society, 1981.

28. Weiser, M., "Program Slicing," Proceedings of the 5th
International Conference on Software Engineering, IEEE
Computer Society, pp. 439-449, 1981.

29. Weiser, M., "Programmers Use Slices When Debugging," Commu-
nications of the ACM, v. 25, pp. 446-452, July 1982.

30. Boehm, B. W., "Seven Basic Principles of Software Engineering,"
Journal of Systems and Software, v. 3, pp. 3-24, 1983.

31. MacLennan, B. J., Programming Tools and Environments, draft,
1987.

32. Curtis, B., and others, "On Building Software Process Models
Under the Lamppost," Proceedings of the 9th International
Conference on Software Engineering, IEEE Computer Society, pp.
96-103, 1987.

33. Boehm. B. W.. and others. "A Software Development Environment
for Improving Productivity." Computer, v. 17. pp. 30-42. June
1984.

34. Davis, W. S., Systems Analysls and Design: A Structured Approach.
Addison-Wesley Publishing Co., 1983.

124

35. VAX/VMS Software Information Management Handbook, Digital
Equipment Corporation, 1985.

36. VAX/VMS Software VMS System Software Handbook, Digital
Equipment Corporation, 1985.

37. Balzer, R., "A 15 Year Perspective on Automatic Programming,"
IEEE Transactions on Software Engineering, v. SE-I1, pp. 1257-
1268, November 1985.

38. Yourdan, E., Managing the Structured Techniques: Strategies for
Software Development in the 1990's, Yourdan Press, 1986.

39. Nomura, T., "Use of Software Engineering Tools in Japan,"
Proceedings of the 9th International Conference on Software
Enginee"ng, IEEE Computer Society Press, pp. 263-269, 1987.

40. VAX/VMS Software Language and Tools Handbook, Digital Equip-
ment Corporation, 1985.

125

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor G. Bradley, Code 52Bz 5
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Professor B. J. MacLennan, Code 52M1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. LT J. Sexton 5
16 Madison Ave.
New Providence, New Jersey 07974

6. Chief of Naval Operations
Director, Information Systems
Navy Department (OP-945)
Washington, D.C. 20350-2000

7. Officer in Charge 2
Software Support Activity
Corry Station
Naval Security Group Detachment
Pensacola, Florida 32511-5000

8. Commander
Naval Security Group Command
Attn: G30
Naval Security Group Headquarters
3801 Nebraska Ave., N. W.
Washington, D.C. 20390-5210

126

* ~wwIwp~j mmso-.

